

Technisch-Naturwissenschaftliche
Fakultät

Reasoning over UML Models
with Ambiguities

MASTER’S THESIS

submitted in fulfilment of the requirements for the academic degree

Diplom-Ingenieur

in the master study of

SOFTWARE ENGINEERING

submitted by:
Franziska Öllerer B. Sc.

completed at:
Institute for Systems Engineering and Automation

referee:

Univ.-Prof. Dr. Alexander Egyed M. Sc.

supervisor:

Univ.-Prof. Dr. Alexander Egyed M. Sc.

Linz, January 17th, 2013

Abstract

A software designer has the ability to define a system using the Unified Modeling

Language (UML). However, a concept to document design decisions along the

modelling process or to add and try different decisions is yet to be developed.

This thesis introduces the Ambiguity Concept. This concept enables its user to add

different design decisions, so called ambiguities, to design models. In addition, this

thesis shows how a consistency checker can be employed to detect inconsistencies

in a model with ambiguities.

In addidion, the Ambiguitymanager, a plugin for the IBM Rational Software Archi-

tect is developed. The Ambiguitymanager can be used to add ambiguities to UML

models and to conduct reasoning steps. Although all examples are realised with the

UML, the Ambiguity Concept is applicable for any kind of modelling languages as

long as they are based on a well-defined meta-model.

Implementing a large case study in assistance with the Ambiguitymanager proved

that the Ambiguity Concept is applicable to a huge number of model elements. The

case study shows that the Ambiguitymanager offers the possibility to define op-

tional elements instead of re-modelling entire model parts depending on a decision.

Furthermore, with the Ambiguitymanager users can select particular model ele-

ments of a complex model and add certain ambiguities instead of re-modelling the

whole diagram. In addition to the case study, the Ambiguitymanager and the Am-

biguity Concept are evaluated in terms of perceptions resulting from the implemen-

tation of the case study.

Zusammenfassung

Mit der Unified Modeling Language (UML) ist es einem Designer möglich, ein

Software-System zu spezifizieren. Auch wenn diese Sprache ein weites Spektrum

an Sprachkonzepten definiert, so gibt es jedoch noch kein Konzept, um ausgewähl-

te und auch ausselektierte Designentscheidungen aufrecht zu erhalten und mitei-

nander zu kombinieren, bzw. auszuprobieren.

Diese Thesis stellt das Ambiguity Concept vor. Mit diesem Konzept ist es möglich,

unterschiedliche Designentscheidungen, sogenannte ambiguities, in Entwurfsmo-

dellen zu definieren. Des Weiteren wird gezeigt, wie ein consistency checker ver-

wendet wird, um Inkonsistenzen in Modeldefinitionen mit ambiguities aufzude-

cken.

Außerdem wird ein Plugin namens Ambiguitymanager für den IBM Rational Soft-

ware Architect entwickelt. Mit diesem Plugin kann ein Designer ambiguities in

UML Modellen definieren, verwalten und Konsistenzprüfungen durchführen. Auch

wenn alle Beispiele in dieser Arbeit durch die UML beschrieben sind, ist das Am-

biguity Concept auf jede andere Art von Modellierungssprache mit einem definier-

ten Metamodell anwendbar.

Um zu zeigen, dass das Ambiguity Concept ebenso auf Modelle mit einer großen

Anzahl von Modellelementen anwendbar ist, wird eine Fallstudie mit dem Ambi-

guitymanager implementiert. Durch diese Implementierung wird deutlich, wie ein

Designer optionale Modellelemente definieren und somit Modellierungsarbeit ein-

sparen kann. Abschließend werden die aus der Implementierung der Fallstudie

gewonnen Aspekte in Bezug auf den Ambiguitymananger und das Ambiguity Con-

cept diskutiert.

Acknowledgements

I would like to thank Prof. Dr. Alexander Egyed for guiding me through this thesis.

Our discussions helped me understand the complexity of modelling aspects. Addi-

tionally, I thank Dr. Roberto Erick Lopez-Herrejon for suggesting such an appro-

priate case study.

Furthermore, I thank Prof. Dr. Klaus Schmid for his support and advices in terms

of research literature for Software Product Lines.

I would like to thank DI Philipp Lengauer for his support through my master stud-

ies and his knowledge about formalism and verification. Additionally, I thank DI

Markus Koppensteiner for helping me understanding networks and I thank Daniel

Neidhart for his PowerCollection class. Sebastian Schubert, thank you for the din-

ner every Sunday.

Anna Deckmann, thank you for your helpful tips concerning the English language.

Sincere thanks to my family for their steady support and encouragement.

Finally, I would like to thank Dirk Bahl for his patience and love.

Index of Contents

Index of Contents

Abstract .. 3	

Zusammenfassung ... 5	

Acknowledgements .. 7	

Index of Contents ... 1	

1	
 Introduction ... 1	

1.1	
 Motivation .. 1	

1.2	
 Goal .. 2	

1.3	
 Scope of Work .. 3	

1.4	
 Terms and Definitions .. 3	

1.5	
 Structure of the Thesis ... 4	

2	
 Basic Knowledge .. 5	

2.1	
 The Unified Modeling Language (UML) ... 5	

2.2	
 Consistency Checking in UML .. 9	

2.2.1	
 Consistency Rules ... 10	

2.2.2	
 Model Analysing Approaches ... 11	

2.2.3	
 Constraint Satisfaction Problem .. 12	

2.3	
 Background .. 14	

2.3.1	
 Adding Ambiguous Design Decisions .. 14	

2.3.2	
 The ModelAnalyzer ... 15	

2.4	
 Related Work ... 17	

3	
 UML and Ambiguities .. 25	

3.1	
 Illustration and Running Example ... 25	

3.2	
 The Ambiguity Concept ... 28	

3.2.1	
 Relations between Ambiguities ... 37	

3.3	
 Reasoning over UML Models with Ambiguities 44	

4	
 Implementation ... 51	

4.1	
 Rational Software Architect ... 51	

4.2	
 The Ambiguitymanager Plugin .. 53	

4.2.1	
 Requirements ... 54	

4.2.1.1	
 Graphical User Interface .. 54	

4.2.1.2	
 Persistence .. 60	

Index of Contents

4.2.1.3	
 Reverse Ambiguities Generation ... 63	

4.2.1.4	
 Choice Generation .. 64	

4.2.1.5	
 Model Analyser Connection .. 64	

4.2.2	
 Limitations .. 65	

5	
 Case Study .. 67	

5.1	
 Overview .. 68	

5.1.1	
 Domain Model .. 68	

5.1.2	
 Feature Model ... 71	

5.2	
 Implementation and Adaption .. 73	

5.2.1	
 Vehicles Management Variation Point ... 73	

5.2.1.1	
 Structural Changes ... 74	

5.2.1.2	
 Behavioural Changes ... 76	

5.2.2	
 Resulting Choices .. 79	

5.2.3	
 Comparison of Approaches ... 80	

5.3	
 Reasoning ... 82	

5.3.1	
 Determinations .. 82	

5.3.2	
 Problems .. 83	

6	
 Problems and Limitations .. 85	

6.1	
 Storage and Encapsulated Features .. 85	

6.1.1	
 Storage of Elements .. 85	

6.1.2	
 Encapsulated Features ... 86	

6.2	
 Optional Elements .. 86	

6.3	
 Implicit and Explicit Dependencies ... 86	

6.3.1	
 Grouping Mechanism Choicevalues ... 87	

6.3.2	
 Grouping Mechanism of Choices .. 89	

6.3.3	
 Choice in Multiple Ambiguities .. 91	

6.3.4	
 Solution with Constraints .. 92	

6.4	
 Complex Reverse Ambiguities .. 92	

7	
 Summary and Conclusion .. 95	

7.1	
 Conclusion .. 95	

7.2	
 Future Work ... 97	

Figures .. 99	

Code Examples ... 101	

Tables .. 103	

Index of Contents

References ... 105	

Curriculum Vitae ... 109	

Sworn Declaration ... 113	

	

Introduction

 1

1 Introduction

Imagination is more important

than knowledge, because

knowledge is limited.

(Albert Einstein)

In the design phase of a software system, stakeholders are confronted with a huge

number of ideas and design decisions. While some of them might be adequate for

the architecture of the desired system, some might be dissatisfactory and will be

discarded. This masters’ thesis deals with the expression of different design deci-

sions, so called ambiguities, in design models. The Ambiguity Concept introduced

in this thesis provides a possibility to express different design decisions in terms of

any kind of models and model elements. The Unified Modeling Language (UML)

[1] is the de facto standard modelling language that is used to design a software

system concerning its behavioural and structural aspects. Due to this, the Ambigui-

ty Concept is discussed in terms of the UML.

1.1 Motivation

Although a software designer has the ability to define a system with the UML, a

concept to document design decisions along the modelling process has yet to be

developed. While one might say that discarded design decisions are dissatisfactory

and have been excluded for a reason, they might prove valuable later on if re-

quirements are changing or if previously made decisions clash with general re-

quirements or basic conditions. In this case, rejected decisions may have to be re-

viewed again.

Furthermore, an assistant that tells the designer, which design decisions may cause

inconsistencies in the model based on defined constraints and which satisfy a par-

ticular need, does not yet exist. Thus, this thesis discusses ambiguous decisions of

design models and how they can be evaluated in terms of defined conditions.

Software product lines can be considered as a particular paradigm that is concerned

with handling different decisions in terms of variability of derived products. There

are several approaches e.g. Gomaa’s [2] and the general approach of commonality

Introduction

 2

and variability modelling in software product lines. The latter focuses on a compo-

nent-oriented approach such as features encapsulating a particular functionality of

the system. However, Gomaa also focuses on feature models in terms of software

product lines, but his PLUS (Product Line UML-Based Software Engineering)

approach provides an extension to the existing UML in terms of introducing con-

cepts to depict optional, mandatory, and alternative aspects.

Product lines can contain mutually exclusive features, never to be selected together

in a configuration for a derived product. If for some reasons such features are se-

lected together, the derived product can be considered as inconsistent due to the

fact that its configuration violates defined rules between features.

Consistency checkers can help an engineer find a consistent configuration. They

detect inconsistencies with respect to defined feature models and their optional and

mandatory features. Even though approaches to express variability in product lines

exist, a concept to express such a decision for any kind of model is still missing.

Moreover, there exists no solution enabling its user to handle different design deci-

sions in terms of their compatibility or to find the best combinations of decisions

for a defined problem.

The Ambiguity Concept aims at providing an approach to document different de-

sign decisions by keeping them alive even if they are not selected for a particular

design model. The concept also provides a mechanism that can be used to find all

combinations of defined design decisions if they depend on one another.

In addition, it can be used to try different combinations of design decisions. In the

course of this thesis, a tool implementing the Ambiguity Concept has been devel-

oped. This tool is called Ambiguitymanager and provides the ability to add ambigu-

ities to design models. In addition, the Ambiguitymanager is linked to an existing

model analyser tool. Combined they can be used to conduct consistency checks,

i.e. checking if the model is still valid with different combinations of design deci-

sions. Thus, the tool provides the detection of inconsistencies in model definitions.

1.2 Goal

The goal of this thesis is to define a language to express different design decisions

for design models, so called ambiguities. Furthermore, a tool that realises this ap-

proach by providing the management of ambiguities for UML model elements is

Introduction

 3

implemented. Additionally, the implemented tool is connected to an existing model

analyser that provides consistency checking of combined design decisions. Such a

decision is called a choice. A choice results from ambiguities and existing manda-

tory values of a model element and a depending property for which the ambiguity

was created. The consistency checker performs reasoning steps and takes choices

as input. Furthermore, it combines choices if they affect one another and returns so

called determinations, which can be declared as consistent or inconsistent.

Hence, the reasoning process can identify a set of choices, which can never lead to

a consistent model. Consequently, the consistency checker informs a designer

about whether his design decisions are defined in an inconsistent way.

To show that the Ambiguity Concept can be used with a huge number of model

elements, a large case study is implemented in association with the Ambiguityman-

ager.

In addition, the Ambiguitymanager and the Ambiguity Concept are evaluated in

terms of perceptions resulting from the implementation of the case study.

1.3 Scope of Work

This thesis focuses on expressing unsolved design decisions of model elements

defined with a software modelling language. The Ambiguity Concept can be

adapted to any kind of software modelling language if there exists a well-defined

meta-model. However, this thesis takes the UML as a representative modelling

language due to its widespread popularity.

1.4 Terms and Definitions

The terms user, designer, or engineer describe a person who defines a system de-

sign and interacts with particular software tools. All those terms can be considered

as equals.

Furthermore, the terms design decision, decision, or choice represent a possibility

to model a certain aspect of a system and can be considered as equals. A choice

printed in cursive characters denotes a unique choice of the Ambiguity Concept.

Finally, a model element or element denotes a particular model aspect or model

instance as defined in the UML.

Introduction

 4

1.5 Structure of the Thesis

Chapter 2 provides an overview about the basics as well as background knowledge

needed to understand important aspects of adding different design decisions to

models. On account of this, the Unified Modeling Language and consistency

checking of models will be pointed out. Additionally, background aspects of add-

ing different design decisions to UML models will be discussed. The chapter ends

with an overview about related work, such as Product Line Engineering and model

analysers.

Chapter 3 presents an approach to the so called the Ambiguity Concept and illus-

trates its usefulness in terms of adding different design decisions, called ambigui-

ties in the context of this thesis, for UML models. Additionally, the reasoning pro-

cess over models with ambiguities will be illustrated.

Chapter 4 deals with the implementation of the Ambiguitymanager, a plugin for the

IBM Rational Software Architect. It will be explained how this plugin can be used

to add ambiguities to UML models and to conduct reasoning steps.

Chapter 5 describes the implementation of a huge case study in terms of the Ambi-

guity Concept. After providing concrete examples of that implementation, prob-

lems concerning the conducted reasoning process will be discussed.

Chapter 6 deals with problems and limitations of the Ambiguity Concept and the

Ambiguitymanager. Additionally, it offers concrete examples and possible solu-

tions to problems one might encounter.

Chapter 7 is the summary and conclusion of the thesis. In addition, it provides an

overview about possible further work in terms of strengths and weaknesses of the

Ambiguity Concept, the Ambiguitymanager, and the conducted reasoning process-

es.

Basic Knowledge

 5

2 Basic Knowledge

This chapter provides an overview about the basics as well as background

knowledge required to understand important aspects of adding different design

decisions to models. The Unified Modeling Language (UML) [1] and its diagrams

are introduced, some examples of practical usage provide illustration of the pro-

cesses. Furthermore, the question of how to check the consistency of UML models

and what mechanisms and approaches exist will be discussed. Additionally, some

background information regarding the process of adding different design decisions

to UML models will be provided. Furthermore, Ambiguous Reasoning, first pub-

lished by Egyed et al. [3], will be discussed; technological aspects as well as the

weakness of their approach will be pointed out. Finally, an overview about related

work such as Product Line Engineering and model analyser will be provided.

2.1 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the most common software modelling

language for object-orientated systems and was invented by Ivar Jacobsen, Grady

Booch and James Rumbaugh in 1997. Later, the UML was offered to the Object

Management Group (OMG) for standardization. On November 14, 1997 the OMG

adopted the UML 1.1. Since then, the UML is a standard modelling language for

object-orientated systems. [1] The current specification of the superstructure of the

UML version 2.4.11 was established in August 2012 and consists of 732 pages. The

document defines structural and behavioural meta-models of UML elements and

relations among them.

A modelling language can help to improve communication between stakeholders in

a development process. Additionally, the capability to visualize a problem and to

discuss design decisions in an early phase of the development process may avoid

further mistakes. Thus, a standardized modelling language with a defined vocabu-

lary and rules how to combine its words is essential in a software development

process.

111 The UML is property of the Object Management Group and is available at

http://www.omg.org/spec/UML/2.4.1/ (2012-02-05).

Basic Knowledge

 6

The UML is a language to visualize, specify, construct, and document a software

system along its development process. [1] To point out the power of the UML, a

summary of the range of application will be provided.

The UML version 2.4.1 consists of 14 diagrams employed to define structural and

behavioural properties of a system. Figure 1 [1] outlines the hierarchy and structure

of its 14 diagrams. The modelling language contains of 7 structural diagrams, e.g.

class and object diagrams, to describe system components and relations between

them. To define behavioural properties between system components the UML also

comprises 7 diagrams, such as sequence and state machine diagrams.

Figure 1:_ Hierarchy and structure of UML diagrams [1].

Some UML examples are essential to ensure a common comprehension of the

UML. In the scope of this thesis, the used diagrams are class, sequence, and state

machine diagrams. Figure 2 shows an UML class diagram of a simplified mp3

player scenario. A class is represented by a rectangle with compartments for class

operations and class attributes.

Basic Knowledge

 7

Figure 2: UML class diagram of a fictive mp3 player scenario.

As illustrated by the diagram, the scenario consists of two classes. The left class is

named MP3Player and has the attribute mp3Playlist as well as an operation called

play. The right class is labelled MP3Playlist and has the attribute named playlist as

well as an operation called add. The plus and minus chars symbolise the visibility

(+ = public, - = private) of attributes and operations.

The relation of these two classes is described by an association and represented by

a line between them. The arrow in the direction of the MP3Playlist class signifies

that an object of MP3Player uses or imports functionalities of an object of

MP3Playlist. In this case, MP3Player has an attribute mp3Playlist with the type

MP3Playlist. A number or an asterisk describes the multiplicity of an association

for zero to infinity; they are often found on each end of the line. It is also possible

to add roles for an association. This is illustrated by a role name placed next to the

class. In this scenario, one can read the association as follows:

1. The MP3Player has only one MP3Playlist and has no certain role.

2. The MP3Playlist belongs to only one MP3Player and has the role playlist.

Figure 3 shows an UML sequence diagram of the mp3 player scenario. The two

rectangle objects are called lifelines. The left lifeline is labelled with c and has type

MP3Player, the right lifeline is labelled with p and has the type MP3Playlist. The

arrow from c to p signifies that c calls p with an operation called add. A vertical

rectangle symbolizes active parts of a lifeline object.

Basic Knowledge

 8

Figure 3: UML sequence diagram of a fictive mp3 player scenario.

The last required UML diagram is the state machine diagram. It is depicted in Fig-

ure 4. This diagram type is used to describe behavioural properties of system com-

ponents, respectively components’ states. A state machine describes possible states

of a component by a given sequence of actions, states and reactions. [4]

Figure 4 shows a simplified state machine of the MP3Player and its states. The

filled cycle on the left signifies the start of the sequence. A rounded rectangle de-

notes a state of the MP3Player. A transition between two states is symbolised by an

arrow, the performed action changes into the next state. The filled cycle with a

border on the far right stands for the end of the state sequence.

As depicted in Figure 4, the MP3Player’s state chart diagram consists of two states

On and Playing and of two transitions play and off. The sequence starts with the

On state. If e.g. a user presses the play button on his mp3 player, the MP3Player

class changes into its Playing state.

In reality there may be more possibilities left to decide, e.g. if the user chooses to

play a certain song or stops, pauses or continues the playback. However, in this

simplified scenario the only option is to continue to the end by pressing e.g. the off

button.

Basic Knowledge

 9

Figure 4: UML state machine diagram for the MP3Player.

2.2 Consistency Checking in UML

The immediate detection of inconsistencies in design models can save the designer

redundant work. [5] The following paragraph provides an overview about the pro-

cess of detecting inconsistencies in UML models.

The UML defines a meta-model for loosely coupled diagrams and design nota-

tions. With the UML, designers can define a system’s structure and behaviour from

different viewpoints. Inter-relations between different UML views are not defined

adequately in the meta-model. Thus, the meta-model lacks sufficient declaration to

define rules, dependencies, and semantic aspects among UML diagrams. [6], [5]

With the UML, designers can construct systems by using the divide and conquer

strategy. This means that de facto UML diagrams benefits designers in allowing

them to divide design concerns into different viewpoints by applying separating

aspects. Additionally, this division can reduce complexity. Since smaller pieces of

a system’s properties are easier to understand, it is useful to focus on partial as-

pects.

A problem with separating aspects into different viewpoints and diagram-centric

approaches is that, in fact, diagrams and viewpoints are not independent and do

affect one another. In addition, different viewpoints of the same system can cause

redundancies in terms of model information. Thus, mechanisms and methods are

required to check the consistency of all redundant aspects. Such mechanisms are

confronted with semantic and language variations, complicating the task of con-

sistency checking. To check the consistency of diagrams, common consistency

rules and assumption must exist and be defined in a consistent manner. [7]

Hence, two approaches are used to check the consistency of models. The consistent

transformation approach transforms source models into target models by using

well-defined transformation steps, which should guarantee consistency. The con-

Basic Knowledge

 10

sistency comparison approach ensures consistency by a well-defined comparison of

source models and target models to detect inconsistencies. [8]

The following sections deal with rules that can be used to define conditions to

comply with during an evaluation. Furthermore, an overview about model analys-

ing approaches will be provided. Finally, Constraint Satisfaction Problems (CSPs)

will be introduced.

2.2.1 Consistency Rules

Consistency rules for UML models can be used to check whether the model satis-

fies defined conditions. A UML model can be considered as a valid model if it

satisfies those rules. [9]

The following two consistency rules in Table 1, taken from Egyed et al. [9], exem-

plify how such rules can be defined in a consistent manner. Each of them describes

a rule for an UML sequence diagram.

The first rule states that for each name of a message in a sequence diagram be-

tween two lifelines, an operation in the receiver’s class with the same name must

exist. In the implementation of this rule it needs to be checked if the receiver’s

class contains an operation named with the name of the message.

Concerning the sequence diagram depicted in Figure 3, the name add of the mes-

sage between the sender c (MP3Player) and the receiver p (MP3Playlist) must be

an operation in p’s class definition. Figure 2 shows the class definition; since an

operation named add exists in this sequence, the diagram can be considered as

valid concerning the first rule.

Basic Knowledge

 11

Rule Condition

1 Name of message must match an operation in receiver’s class

operations=message.receiver.base.operations

return (operations->name->contains(message.name))

2 Calling direction of message must match an association

in=message.receiver.base.incomingAssociations;

out=message.sender.base.outgoingAssociations;

return (in.intersectedWith(out)<>{})

Table 1: Consistency rules for UML models.

The second rule seems a bit more complex but simply checks if a sending lifeline,

respectively its depending class, is allowed to call the receiving lifeline. This can

be validated by checking if an association between the depending classes exists.

Additionally, the rule must cover whether the association direction matches the

sender and receiver roles, i.e. if an incoming association in the receivers’ class

definition from the sending class and vice versa, but with an outgoing association

of the sending class exists.

Concerning the sequence diagram depicted in Figure 3 the calling direction of the

message between the sender c (MP3Player) and the receiver p (MP3Playlist) must

match an association in p’s and c’s class definitions. Figure 2 shows the class defi-

nitions. Since an association between the MP3Player and the MP3Playlist exists

and the association’s direction matches the message calling direction, this sequence

diagram can be considered as valid concerning the second rule.

Both examples show the dependencies between a system’s components in terms of

their inter-relations among their different representations and viewpoints.

2.2.2 Model Analysing Approaches

A model analyser is used to detect inconsistencies in models automatically accord-

ing to given consistency rules. Benavides et al. describe in [10] different automated

consistency checking approaches grouped by the employed method or logical par-

adigm. Furthermore, they examine those approaches in terms of software product

Basic Knowledge

 12

lines and feature diagrams. Software product lines will be introduced in chapter 2.3

Related Work.

Benavides et al. separate the approaches into three groups, namely Propositional

Logic based analyses, Constraint Programming based analyses, and Description

Logic based analyses. This section provides an overview about these analysis

methods.

The first model analysing method is named Propositional Logic. In this approach a

SAT solver [11] tries to evaluate a propositional formula to true by using appropri-

ate variable assignments. There also exists a Binary Decision Diagram (BDD) ap-

proach, where a propositional formula is translated into a graph to try different

assignment statements and to count possible solutions. [10]

The second analysis approach is named Description Logic. This method consists of

concepts such as classes, roles (relationships among them), and individuals. A de-

pending reasoner supports correctness and consistency checking as well as addi-

tional reasoning operations of a problem that is expressed with a Description Logic

method.

In the third model analysing method called Constraint Programming, a CSP solver

tries to solve a certain Constraint Satisfaction Problem (CSP) [12]. A CSP com-

prises variables, their domains, and depending constraints describing restrictions of

particular domain values. Thus, Constraint Programming offers heuristics and algo-

rithms that are concerned with CSPs. [10] Propositional formulas as used in Propo-

sitional Logic approaches can only be evaluated to true or false, however, CSP

solvers can handle numeric domains of variables as well. The Constraint Satisfac-

tion Problem and related approaches to handle such problems will be discussed in

the next subchapter.

This thesis focuses on model analysers working with a Constraint Programming

approach, such as the ModelAnalyzer [5] that will be introduced in chapter 2.3

Background.

2.2.3 Constraint Satisfaction Problem

Constraint Satisfaction Problems can be classified as belonging to the area of Arti-

ficial Intelligence research. [13] A Constraint Satisfaction Problem (CSP) consists

of a set of variables, a domain of possible values for the variables, and constraints,

Basic Knowledge

 13

which must be fulfilled by a variable. Thus, constraints specify allowed combina-

tions of variables and their values. Additionally, a CSP comprises assignments of

values to variables, where an inconsistent assignment violates a given constraint

and a complete assignment satisfies all constraints. However, if there is no possible

solution, the CSP can be considered as not resolvable. [3]

Concerning UML model elements, variables can be regarded as model elements

and their particular properties such as a name or a specific relation to another ele-

ment. On account of that, a domain for a variable can consist of a set of possible

strings for the name property; a value represents a certain string of that set. Accord-

ingly, a constraint can be represented by a consistency rule as introduced in 2.2.1

Consistency Rules. Due to the fact that model elements can affect one another, the

challenge lies in finding valid combinations, i.e. combinations fulfilling all con-

straints, and in returning feasible combinations of model elements and their proper-

ties.

A CSP solution technique (CST) [14] can be used to reduce invalid combinations

of assignments. In software development CSTs can be used to automatically reduce

the number of impossible decisions, which must be made in activities during a

software development process.

CSTs use constraint propagation and domain reduction. While the first identifies

invalid decisions, the latter focuses on the remaining valid decisions. Hence, con-

straint propagation restricts the domains to reduce the solution space. Since varia-

bles are connected with one another by constraints, the restriction of domains of

particular variables causes the restriction of other domains and variables as well.

Thus, the number of possible valid allocations of all variables can be increased.

Concerning this thesis, CSTs can be used to reduce the set of design decisions,

which violate a design model. However, CSTs can only compute solutions, which

do not violate a model in terms of given variables and constraints. They are unable

to consider constraints, which cannot be formulated in a defined way. [3]

Constraint propagation is used here in terms of model elements and their defined

unsolved design decisions. The technique is used to compute solutions, which

comprise valid combinations of decisions for model elements and their properties

with regard to dependencies and relations between them.

Basic Knowledge

 14

2.3 Background

This chapter deals with the approach of Egyed et al. [3] who first came up with the

idea of adding ambiguous or different design decisions to design models. After

describing their basic concept, an overview about the ModelAnalyzer [5], a con-

sistency checker for UML models, will be provided.

2.3.1 Adding Ambiguous Design Decisions

Design choices occur by disagreements of stakeholders’ interests or opinions and

alternative implementations. [15] Certain decisions cannot be expressed formally

due to the fact that they are made by personal reasons (experience, taste). [3]

Egyed et al. [3] describe an approach to support the maintaining of stakeholders’

interests during a software design process. Furthermore, they show how to express

design decisions in a formal way and how to reason over the model with ambigu-

ous decisions and well-formed rules.

The authors use the software modelling tool IBM Rational Software Architect

(RSA) [16], property of the IBM Rational Software [17] division. With the RSA a

software designer can develop architectural and behavioural properties of a system

with the UML. Hence, a software designer has the ability to choose within a huge

number of representations of development artefacts offered by the RSA. [3]

RSA uses the Eclipse Modeling Framework Project (EMF) [18] that is part of the

Eclipse Modeling Project (EMP) [19]. The EMP is a project of the Eclipse Project

[34]. Furthermore, the EMP is concerned with the development, progression and

promotion of technologies in terms of model-based development. It provides a

wide range of open source modelling frameworks, standard implementations, and

tools. [19]

The EMF is one of the modelling frameworks and can be used for the development

of applications, which are based on structured data models. Furthermore, the EMF

provides tools to create and edit models, a basic editor, and a set of Java classes.

[18]

Egyed et al. developed a plugin for the RSA in order to manipulate UML elements

such as classes, lifelines or class operations in terms of their UML features. A

UML feature describes an UML property of an UML element. For example, a class

owns the UML feature ownedOperation that describes its class operations.

Basic Knowledge

 15

Additionally, the EMF specifies opposite features for some features, if this is nec-

essary in terms of affections regarding related model elements.

An example for such an ownership relation is the class (ownership) feature of an

operation and the opposite feature in the EMF specification ownedOperation of a

component (class, interface). De facto an operation is owned by a component.

In contrast, the superclass feature of a class has no opposite feature for the related

superclass, due to the fact that the superclass is not directly affected or depends on

the subclass like the subclass is doing on its superclass.

The authors defined multiple design possibilities for such features and validated the

whole UML model with the consistency checker ModelAnalyzer [5], another

plugin for the RSA. The algorithm to reason over models with ambiguities is vali-

dated by Egyed et al. with a huge number of third-party models and can be found

in [3].

The weakness of [3] is that all different design decisions must be added manually

and directly into the program code. Thus, there exists no graphical user interface.

Additionally, the output of the reasoning process is not presented in a user-friendly

manner and all reverse dependencies for model elements are not generated auto-

matically. It remains impossible to add ambiguous design decisions without a dis-

tinct knowledge of the Eclipse Modeling Framework.

2.3.2 The ModelAnalyzer

Designers are confronted with a huge number of model elements during the design

phase of a software system. Ensuring the consistency of the whole model can be-

come an overwhelming task. Model elements and different representations of mod-

el aspects such as diagrams affect one another and depend on made definitions.

Thus, changing a location in a model can affect depending model parts and render

the model inconsistent.

On account of that, a model analysing tool can support a designer by detecting

inconsistencies immediately if a model changes. In addition, it can provide a

mechanism to track existing inconsistencies and affected model parts. [5]

The ModelAnalyzer was developed by Egyed et al. [5] and realises a consistency

checker to evaluate UML models in terms of defined consistency rules. Further-

more, the ModelAnalyzer operates on the Constraint Programming method men-

Basic Knowledge

 16

tioned in 2.2.2 Model Analysing Approaches. Thus, the ModelAnalyzer operates as

a CSP (Constraint Satisfaction Problem) solver that tries to solve a certain CSP

[12]. A CSP comprises variables, their domains, and depending constraints describ-

ing restrictions of the values of variables. A CSP solver tries to find an adequate

assignment of variables that fulfils all defined constraints expressed through con-

sistency rules. Chapter 2.2.3 Constraint Satisfaction Problem deals with CSPs.

The ModelAnalyzer detects inconsistencies and tracks existing inconsistencies over

time. By doing this, the ModelAnalyzer uses a consistency rule as a black-box con-

straint and identifies affected model elements by observing the behaviour during its

evaluation. Using a consistency rule as a black-box means that there are no exact

definitions of possible values needing to be fulfilled. However, it is a generic ap-

proach. A rule for an UML model de facto provides navigation instructions [3] to

identify affected elements and properties.

The following example shows in detail how model changes can affect different

model representations such as sequence and class diagrams.

The first class diagram depicted in Figure 5 shows the mp3 scenario introduced in

Figure 2. However, the add operation in the MP3Playlist class has been removed.

There is a new operation called set, that takes over the same functionality as the

add operation. Due to this, changes in the class diagram are marked in yellow.

Thus, if a user wants to play a particular mp3, he presses the play button on the

display and the MP3Player calls the MP3Playlist with its set operation to put the

selected song into its playlist.

Figure 5: MP3Playlist with a new set operation.

Due to the modification in the MP3playlist’s operations, a question arises: Which

other model elements or view representations can be affected from that change?

Figure 3 shows the sequence diagram that realises the behaviour of the mp3 player

if a particular mp3 is selected. Since the add operation in MP3Playlist class defini-

tion has been removed, the call between the MP3Player and the MP3Playlist causes

Basic Knowledge

 17

an inconsistency. This is the result of a consistency rule introduced in 2.2.1 Con-

sistency Rules. This rules states that the name of a message must match an opera-

tion in the receiver’s class. The receiver here is the MP3Playlist, but there is no

operation named add in its depending class definition. Thus, the ModelAnalyzer

detects an inconsistency by observing that the rule affects the MP3Playlist class

definition and that it cannot find an add operation. Figure 6 shows the visualised

inconsistency based on Figure 3. The inconsistency is marked in red.

Figure 6: Inconsistency in the defined sequence diagram.

This example shows how changes in a model part can causes inconsistencies in

depending parts. In the context of this thesis, the ModelAnalyzer is used to detect

inconsistencies with a set of different and ambiguous design decisions of UML

models. An in-depth explanation as to how the evaluation is conducted will be

provided in 3.3 Reasoning over UML Models with Ambiguities.

2.4 Related Work

In this chapter an overview about related work will be presented. Product Line

Engineering will be introduced and a modelling approach for software product

lines with the UML will be discussed.

A software product line (SPL) or software family consists of a range of software

instances, which are build on the same platform. Products of the platform share

more commonalities than variability. [10]

Basic Knowledge

 18

Furthermore, such a platform consists of core components on which every software

product that is part of the SPL, is build. The shared platform consists of architec-

tural aspects, domain models, software components, requirement documents, test

artefacts such as test plans and test cases. [20], [21] A concrete product of a prod-

uct line can use additional software components, which are not part of the platform.

Thus, the products derived from a SPL differ in individual configurations and addi-

tional functional or non-functional requirements.

There are a number of definitions for SPLs in the research area. In this thesis, two

definitions focussing on different perspectives will be mentioned. While the first

definition of Clements et al. [22] describes SPLs from a market-driven perspective,

Bosch et al. [23] takes on a technological oriented point of view. [24]

In [22] a SPL is defined as “a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market seg-

ment or mission and are developed from a common set of core assets in a pre-

scribed way”.

However, Bosch defines SPLs as follows: “A SPL consists of a product line archi-

tecture and a set of reusable components designed for incorporation into the prod-

uct line architecture. In addition, the PL consists of the software products devel-

oped using the mentioned reusable assets”. [23]

Product Line Engineering (PLE) is a paradigm that is concerned with the effective

and efficient development of SPLs. It is used to identify common functionalities

and variability in software families. Pohl et al. [25] describe the improvement of

quality and the decrease of development cost and Time To Market (TTM) as the

core advantages and motivations for PLE. Due to the fact, that reused software

artefacts are tested in different parts of a system, the quality of artefacts can be

increased. Furthermore, decreasing development costs results due to reuse of soft-

ware artefacts, which can be used in more than one software product even if higher

development investments must be made at the beginning. However, the initial de-

velopment costs of a SPL’s core artefacts (platform) are high, however, reuse of

artefacts can reduce TTM for individual products. [25] Hence, the SPL paradigm

can also be considered as a cost-effective approach that helps popular companies

such as Motorola or Hewlett-Packard to increase their productivity and customer

satisfaction related to quantitative and quality gains. [26]

Basic Knowledge

 19

PLE includes two major process steps. The first is called Domain Engineering.

This step consists of three phases: The domain analysis phase, the domain design

phase and the domain implementation phase. The domain analyse includes the

identification of commonality and variability aspects of a SPL. The domain design

phase consist of activities to develop core assets and the definition of the SPL ar-

chitecture. During the domain implementation phase the defined architecture is

implemented.

The second major step in PLE, named Application Engineering, describes the de-

velopment of final products based on core assets and additional product-specific

customer requirements. [24]

Two approaches are used to express variability in software product lines, first fea-

ture modelling (FM) and second decision modelling (DM). A comparison of both

approaches can be found in Schmid et al. [27]. In chapter 5 feature models are used

to express variability in the focused case. Additionally, an overview about core

aspects of decision modelling will be provided.

A feature model is the most popular method to express variability of SPL products.

[24] On account of that, a feature model comprises all information of possible

products of a SPL and describes features and relationships among them. [10] Fur-

thermore, a feature diagram contains functionalities or features, which are part of

any derived product of the product line and thus part of the platform. There are

additional features, which describe a variation point and its concrete manifestation

depending on the derived products.

To understand a feature model a simplified feature diagram of a product line for

mobile phones is introduced. The feature diagram used in this thesis was adapted

from [27] and is depicted in Figure 7.

Products of the mobile phone product line must have an address book and func-

tionality allowing data transfer. The address book must offer the functionality to

add contact data in the form of plain text. In addition, a derived product may have

the opportunity to take a photo and to add it to a particular contact. The latter is

considered as optional as it is not a mandatory requirement for a product. The data

transfer can be realised via UMTS or GPRS. Furthermore, a product can have a

camera used to take pictures. The camera can be equipped with a zoom or a self-

timer.

Basic Knowledge

 20

The example in Figure 7 depicts such a Feature Diagram of the product line for

plain mobile phones. A feature model can also be expressed in a tree notation as in

[28].

The first level consists of one rectangle that stands for the specified product line.

The second level describes possible features, which can be separated into two cate-

gories. The first category encloses features such as Address book and stands for

functionalities, which are part of the platform and can be found inside of any de-

rived product of the mobile phone-SPL. The two remaining features named with

Data transfer and Camera at the second level describe variation points and their

representing rectangles are filled out in light grey. The dots on top of each rectan-

gle depict whether a feature is optional (filled out in white) or required/mandatory

(filled out in black).

Features can also consist of features and feature groups as shown in the third level.

However, feature groups can be selected together at it is the case in the Address

book feature. Thus, it is possible to have a product of the mobile phone product line

that possesses contact data in form of text and a contact photo at the same time

(AND feature group). Furthermore, there is a notation to express features that can

be selected together. Please note that it is required to select at least one feature (OR

feature group). The camera, for example, can have a zoom and also a self-timer. In

addition, there are feature groups which cannot be selected at the same time, as it is

the case in the feature representing the data transfer functionality (XOR feature

group). Furthermore, the require arrow from the feature Contact photo to the cam-

era feature symbolises that Contact photo requires the Camera feature, thus, it

cannot be selected without the latter.

Basic Knowledge

 21

Figure 7: Feature diagram for the mobile phone SPL

The decision modelling approach was developed by the Software Productivity

Consortium [29] for industrial use and will be introduced in the following section.

The variability model in Table 2 depicts a decision model in a tabular notation

adapted from [27] for the mobile phone scenario.

Basic Knowledge

 22

Decision

name

Description Type Range Cardinali-

ty/Constraint

Visible/Relevant

if

Data _transfer Which data trans-

fer standard shall

be supported?

Enum UMTS/G

PRS

1:2 -

Camera Support camera? Boolean true/false - -

Cam-

era_zoom

Support camera

zoom?

Boolean true/false - Camera == true

Camera_self-

timer

Support camera

self-timer?

Boolean true/false - Camera == true

Ad-

dress_book_

photo

Support contact

photo?

Boolean true/false - Camera == true

Table 2: Decision model for the mobile phone SPL.

Obviously, the decision model illustrates only variability aspects of derived prod-

ucts of the mobile phone SPL, however, the feature model defines commonalities

as well.

In [30], Bosch et al. identify five level of variability in software product lines such

as a product-line level, an architecture level, a component level, a sub-component

level, and a code level.

In a product line level variability occurs in terms of the variation of derived prod-

ucts. Additionally, in the architecture level or product level variability aspects oc-

cur in the choice of components and the architecture of a product.

A component is composed of feature sets. Furthermore, variability on the compo-

nent level is concerned with the evolution and the apposition of new implementa-

tions in terms of the component interface. On account of the level mentioned pre-

viously, the feature sets of a component in the sub-component level are selected

based on a derived product.

In addition, in the code level most variability aspects occur in terms of different

products. This is due to the fact that in implementations, respectively in the de-

pending code, particular features of a product are selected. Thus, at this level the

difference in detail between products manifests. On account of that, code annota-

Basic Knowledge

 23

tions, so called ifdef statements, separate different implementations to identify se-

lected features and their corresponding code. [30]

There are a huge number of tools to define commonalities and variability among

products of a product line. Such tools can support stakeholders by configuration

and derivation of product variants. Gears [31] and pure::variants [32], are commer-

cial product line tools, which support code annotation in terms of selected features.

[33]

In his book [2], Gomaa introduces a modelling approach for software product lines

with the UML. The approach is called PLUS (Product Line UML-Based Software

Engineering). PLUS provides extensions for existing UML modelling approaches,

which are used for the development of single systems. Thus, PLUS extends the

UML with concepts and techniques to model commonalities and variability in

software product lines. By doing this, Gomaa introduces concepts to express fea-

tures, interactions between components, and provides extensions such as alterna-

tive, mandatory, and optional keywords to express variability, respectively varia-

tion points of product line architectures.

Additionally, the PLUS approach provides concepts to model variation points by

adding abstract classes. This means that de facto there are classes inheriting from

the abstract classes, which differ in their concrete implementation depending on a

particular product. Furthermore, Gomaa uses the concept of parameterised classes

to design variation points and their depending classes.

Related to SPL and variability modelling of features, this thesis focuses on the

variability of design decisions of any kind of UML model element. Variability

models in terms of feature models or decision models can express commonalities

and variability among products of a product line, but not of different design deci-

sions of UML model elements such as class operations or class attributes. Thus, the

definition of such ambiguities requires another concept and cannot be expressed

through the variability modelling approaches mentioned.

However, Gomaa introduces a concept of optional, mandatory, and alternative

UML elements, by focusing on software product lines in terms of their variability

aspects. The PLUS approach represents a basic concept to express optional or

mandatory aspects to any kind of UML model element. The Ambiguity Concept

can be considered as an extension and can be used for the definition of different

design decisions of UML elements.

Basic Knowledge

 24

On account of that, this thesis deals with ambiguities concerning any kind of UML

model elements. Furthermore, the next chapter 3 UML and Ambiguities introduces

the Ambiguity Concept and shows a concrete approach to add ambiguities to UML

model elements.

UML and Ambiguities

 25

3 UML and Ambiguities

The definition of different design decisions among UML models requires the usage

of an expression language to define decisions in a well-defined and consistent fash-

ion. Due to that, this chapter presents an approach, called the Ambiguity Concept

[3], and illustrates its usefulness in terms of adding different design decisions,

called ambiguities, to UML models.

As a first step, a running example of an mp3 player is introduced to demonstrate

the existence of different design decisions in UML models. Furthermore, the Am-

biguity Concept and its basic components are explained. In a third step, a deriva-

tion of an ambiguity from different design decisions is presented. Following this,

relations and dependencies between ambiguities are discussed. Finally, reasoning

over UML models with ambiguities, so called ambiguous reasoning, will be ex-

plained.

3.1 Illustration and Running Example

In this subchapter, a running example of an mp3 player is introduced to demon-

strate the existence of different design decisions in UML models.

A software designer can choose between many possibilities to model such an mp3

player system. To demonstrate where ambiguities in the modelling process can

occur, two variants will be illustrated. The mp3 player scenario is reduced to the

main functionalities; operations or attributes are omitted if they were not necessary

for this illustration.

The first possible variant of an mp3 player scenario is designed with three compo-

nents illustrated in Figure 8. The MP3Display stands for a simple display where the

user can press buttons to play mp3s from a playlist. The second class MP3Player

encapsulates the management of an mp3 playlist. The last class, labelled

MP3Playlist, holds the mp3s in a playlist. Additionally, it offers an operation to

add mp3s to its playlist. Furthermore, there exists a simple undirected relation be-

tween MP3Display and MP3Player. While MP3Display calls operations of

MP3Player if a user presses a button to play a song, the MP3Player calls the

MP3Display by confirming the command. Hence, the association between

MP3Player and MP3Playlist describes that MP3Player holds an attribute (playlist)

of the type of MP3Playlist.

UML and Ambiguities

 26

Figure 8: Variant 1: UML class diagram with three components.

Figure 9 shows a Sequence Diagram of the interaction between the three compo-

nents. If the MP3Display calls the MP3Player to play an mp3, the MP3Playlist is

forced to add the selected mp3 to its list via its add operation.

Figure 9: Variant 1:UML sequence diagram with three components.

While this scenario meets all requirements, there might be another possibility for

such a scenario. Hence, Figure 10 shows the same scenario without an MP3Playlist

class. The functionality of the omitted class is taken over by the MP3Player. In-

stead of an attribute of the type MP3Playlist, this class has a plain list where the

mp3s are stored.

UML and Ambiguities

 27

Figure 10: Variant 2: UML class diagram with two components.

Consequently, the interaction between the remaining components changes as illus-

trated in Figure 11.

Figure 11: Variant 2: UML sequence diagram with two components.

If a user presses a button to play a song, the MP3Display calls the MP3Player’s

play operation and its add operation is invoked.

UML and Ambiguities

 28

3.2 The Ambiguity Concept

This chapter deals with the Ambiguity Concept and introduces its main compo-

nents. In [3], Egyed et al. describe an ambiguity as follows:

An ambiguity is a concept that encapsulates an ambiguous design decision for UML ele-

ments.

Figure 12 depicts a design snapshot of the Ambiguity Concept and its relations as

well as multiplicities among its presented components in UML notation.

Figure 12: The Ambiguity Concept expressed in UML notation.

Each UML-model element owns certain features. Features are structural and be-

havioural properties, such as associations, class attributes, and operations. Features

can consist of complex data types (e.g. self-defined classes) or plain primitive data

types (e.g. String, Boolean). However, ambiguities are allowed for any UML ele-

ment and for any feature.

The owner of an ambiguity is simply the UML model element for which the ambi-

guity was created. Additionally, there exists a component of the type location. A

location is a triple of the ambiguity owner, the feature, and a list of depending

ambiguities. Thus, all ambiguities, which are in a location’s list of references must

have the same owner and the same feature.

UML and Ambiguities

 29

A choicevalue is a possible design decision for an ambiguity. A choicevalue is a

reference of an existing UML model element of the current modelling project, a

primitive or a self-defined value that was created for the ambiguity. A choicevalue

can occur in different choices for a location and is a unique element. This means

that ambiguities of a location enfolding the same model element as a choicevalue

reference in fact to the same instance in their choicevalue list.

The relation kind of an ambiguity describes the relation among choicevalues to

one another and whether they can be selected together or not. There are three pos-

sible values: xor, at_least_one, and optional. In the case of features with a multi-

plicity greater than one, (e.g. class operations), all three kinds of relation are possi-

ble values. In case of a feature with a multiplicity exactly one (e.g. class name),

however, there is only xor or optional allowed. However, at_least_one would

make no sense, since only one possible value can be selected.

If an ambiguity holds a xor relation it means that there is a rule stating that none of

the choicevalues can be selected together. If this rule is violated, the model be-

comes inconsistent. Moreover, if an at_least_one relation kind is selected, this

means that all of the choicevalues can be combined together, but at least one of

them is required for the model to qualify as consistent. Finally, the optional rela-

tion kind says that all choicevalues can be selected together in every possible man-

ner. Even if none of them is selected the model remains valid.

The algorithm used to create an ambiguity will be described in pseudocode, a sim-

plified programming language that is not defined in a formal way (compared to

other programming languages such as Java). Pseudocode facilitates understanding

a basic idea of algorithms or a basic approach; less important details are omitted

and substituted through non-formal expressions. Thus, it is used for a basic under-

standing of algorithms and is not appropriate for machinable interpretations. Two

slashes symbolise the start of a comment that is not part of the algorithm and has

been added for a better understanding of the expression it follows.

The following example in Code 1 depicts the creation of an ambiguity in pseudo-

code. The function createAmbiguity requires four parameters to create an ambigui-

ty. The affected model element (owner) and feature are required to create an am-

biguous location. Additionally, the list of choicevalues and a relation kind are

needed.

UML and Ambiguities

 30

createAmbiguity(e:UMLElement, f:UMLFeature,

 c:List<Choicevalue>, k:Kind)

begin

 //Calls the basic constructor

Ambiguity ambiguity = new Ambiguity()

Location location = new Location(e, f)

ambiguity.location = location

ambiguity.relationkind = k

ambiguity.choicevalues = c

end createAmbiguity

Code 1: Creation of an ambiguity in pseudocode.

To provide a concrete example of the creation, the following line shows a call of

createAmbiguity for the unsolved design decisions of the add operation and its

class feature introduced in 3.1 Illustration and Running Example.

createAmbiguity(add(), class,[MP3Player, MP3Playlist], xor)

The result of that call is an ambiguity for the add operation, its class feature and

two possible choicevalues, MP3Player and MP3Playlist. As required, the ambigui-

ty describes that the add operation is owned by the MP3Player or the MP3Playlist

class.

However, if a choicevalue of an ambiguity is represented by an UML model ele-

ment, in most cases there is a need to describe a reverse relation between the ambi-

guity owner and the depending choicevalue’s feature. Thus, a reverse ambiguity is

an ambiguity generated automatically for a choicevalue of an ambiguity. Automati-

cally means that a reverse ambiguity results from the user-defined ambiguity. The

feature of a reverse ambiguity is an opposite feature of the original ambiguity fea-

ture. However, it is not mandatory that such a reverse relation of features exists.

As mentioned in 2.3.1 Adding Ambiguous Design Decisions, the EMF specifies

opposite features for some features, if it is necessary in terms of affections regard-

UML and Ambiguities

 31

ing model elements. Thus, in case of the superclass feature of a class, there exits

e.g. no opposite feature for the related superclass. This is due to the fact that the

superclass is not directly affected or depends on the subclass like the subclass is

doing on its superclass.

On the contrary, there is the class (ownership) feature of an operation and the op-

posite feature in the EMF specification is ownedOperation of a component (class,

interface). In this case such an ownership relation exists between both features.

This means that an operation is owned by a component.

The relation kind of a reverse ambiguity is always optional and it encapsulates the

ambiguity owner of the original ambiguity as the only choicevalue. The ambiguity

owner of the reverse ambiguity is a choicevalue of the original or user-defined

ambiguity.

The following pseudocode snipped in Code 1 shows the creation of a reverse am-

biguity from a defined ambiguity and a choicevalue.

UML and Ambiguities

 32

createReverseambiguity(a:Ambiguity,

 c:Choicevalue)

begin

 //Calls the basic constructor

Ambiguity reverseambiguity = new Ambiguity()

//Gets the required opposite feature

Feature oppositefeature = ambiguity.oppositefeature

//The owner of the given ambiguity

UMLElement owner = a.owner

//The choicevalue to create a reverse relation is the owner of //and the

opposite feature is the feature of the location

Location reverselocation = new Location(c, oppositefeature)

reverseambiguity.location = reverselocation

//Always relation kind optional

reverseambiguity.relationkind = OPTIONAL

//the only choicevalue is the owner of the given ambiguity

reverseambiguity.choicevalues = new List<Choicevalue>(owner)

end createReverseambiguity

Code 2: Creation of a reverse ambiguity in pseudocode.

To provide a concrete example of the creation the following line shows a call of

createReverseambiguity for the above created ambiguity. The opposite feature of

an operation’s class feature is the ownedOperation feature of a component. To get

that opposite feature, the feature of the ambiguity is required. Thus, the opposite

feature can be found retrospectively by a feature’s EMF specification.

createReverseambiguity(ambiguity, MP3Player)

The result of that call is a reverse ambiguity for the MP3Player class, its ownedOp-

eration feature and the single choicevalue the add operation.

However, problems in the implementation of the EMF specification with opposite

feature definitions exist. This means that there are not defined (null value) opposite

UML and Ambiguities

 33

features, even if they are required. Thus, it is not possible to generate them intro-

spectively by their class definitions. The opposite feature of a class’ ownedAttrib-

ute feature is not defined as an attribute’s class feature. Thus, the depending get

operation simply returns a null value.

To understand the idea of creating ambiguities and reverse ambiguities, some con-

crete examples are essential. Thus, the following paragraph depicts illustrations

and concrete examples of the derivation processes.

Figure 13 illustrates a derivation of an ambiguity with the ambiguity concept. The

three rectangles on the left describe how to derive a location from the definition to

a concrete instance. Thus, it is mandatory to know, which location in the model is

affected. As mentioned before, the triple consists of an UML feature and an UML

model element and related ambiguities. In this case is only important to show the

derivation of the feature and the model element. Like in the case of the two possi-

ble design variants illustrated in Figure 8 and Figure 10 the design decision con-

cerning the add operation’s class feature can be expressed through an ambiguity.

The class feature represents an ownership of an operation, respectively to what

class an operation depends.

In the first variant illustrated in Figure 8, the add operation is defined in the

MP3Playlist. In the second variant shown in Figure 10, there is no MP3Playlist and

the MP3Player encapsulates the add operation. While there are two different vari-

ants for the same scenario, the same model element and the same feature are af-

fected by an ambiguous design decision. As one can see, the only difference in

every variant is the choicevalue. MP3Playlist (In the first variant – Figure 8) and

MP3Player (in the second variant – Figure 10) are the possible values for the class

feature and the add operation.

The three rectangles among one another in the middle of Figure 13 describe how to

define possible choicevalues for an ambiguity. Here two possible choicevalues

exist: MP3Player and MP3Playlist. Due to the fact that the class feature has a mul-

tiplicity of exactly one and that one value has to be chosen2, the relation kind in

this example is xor and its derivation is illustrated in the three rectangles on the

right.

2 At least one value is required for an operation and its class feature, because an operation

cannot be defined without a depending component.

UML and Ambiguities

 34

Accordingly, the ambiguity derived in Figure 13 can be expressed in the following

line.

A1 = (add()+class, xor, {MP3Player, MP3Playlist})

The ambiguity can be read as:

The ambiguity A1 for the location add() and its feature class with the relation kind

xor has two possible choicevalues MP3Player and MP3Playlist.

Figure 13: Derivation of an ambiguity

Figure 14 illustrates a derivation of a reverse ambiguity with the Ambiguity Con-

cept for one choicevalue of the defined ambiguity in Figure 13. On accord of this,

the reverse ambiguity depends on the MP3Player and its feature ownedOperation.

The only possible value is the add operation and the relation kind is optional.

UML and Ambiguities

 35

Figure 14: Derivation of a reverse ambiguity

Accordingly, the ambiguity derived in Figure 14 can be expressed as follows.

A1.1 = (MP3Player+ownedOperation, opt, {add()})

On account of the introduced example of the two different variants of the mp3

player scenario behaviour in Figure 9 and Figure 11, the following ambiguity can

be defined.

A2 = (add()+receiveEvent, opt, {p, c})

This definition expresses that there exists an ambiguity for the location add (mes-

sage) and its feature receiveEvent. This feature describes the target lifeline of a

message call. The possible choicevalues are p (MP3Player) and c (MP3Playlist).

Since only one target lifeline can be selected, the relation kind is optional.

There is still one main components of the Ambiguity Concept, called choice, left.

A choice can be considered as a design decision and consists of a set of choiceval-

ues. An ambiguity has a set of choices generated from its choicevalues. A location

has choices as well and if there is more than one ambiguity for a location, it con-

tains a set of all depending ambiguity choices and their combinations. The choices

of an ambiguity depend on its relation kind.

The choice generation for an ambiguity is formulated in pseudocode and is depict-

ed in Code 3. The choice generation for locations with more than one ambiguity

will be explained in the next subchapter. This section will focus on the choice gen-

UML and Ambiguities

 36

eration for one single ambiguity. Generating choices for an ambiguity does not

require considering any existing values or so called mandatory values of a location.

This will be covered by the generation for a location and will be explained in the

next subchapter 3.2.1 Relations between Ambiguities.

However, the algorithm to generate choices for an ambiguity is separated into two

sections. First, one has to distinguish between features with a multiplicity greater

one (ownedOperation) and those with a multiplicity exactly one (class).

If the multiplicity is greater one, each of the three relation kinds is possible. Fur-

thermore, the result of the choice generation depends on the selected ambiguity

relation kind. If the relation kind is optional or at_least_one it is required to deter-

mine all combinations of choicevalues and to create a choice for any combination.

Additionally, if the relation kind is optional a choice without any choicevalues

must be created. By doing this, it can be ensured that there is only optionally one of

the choicevalues taken, but it is not mandatory. Finally, if the relation kind is xor, a

choice for every choicevalue must be created separately.

This is also the case if the multiplicity of the feature of an ambiguity is exactly one

as described in the second section. Furthermore, if the relation kind is optional, a

choice without any choicevalues as explained in the previous section must be cre-

ated.

generateAmbiguitychoices()

begin

 List<Choice> ambiguitychoices = new List<Choice>()

 if isAmbiguityFeatureMultiplicityGreaterOne() then

 if kind == OPTIONAL OR kind == AT_LEAST_ONE then

 //Create a list of choices, a choice

 //contains a list of choicevalues.

 //For each possible combination of all

 //choicevalues exists a choice

 createPowerCollection(choicevalues)

 if kind == OPTIONAL then

 //Add a choice without choicevalues

UML and Ambiguities

 37

 addEmptyChoice(ambiguitychoices)

 end if

 end if

 else if kind == XOR then

 //Add all choicevalues separately in a

 //choice and add all choices to

 //the ambiguitychoices list

 createChoicesForChoicevalues(ambiguitychoices)

 end if

 //Choices for multiplicity exactly one

 else

 if kind == OPTIONAL then

 //Add a choice without choicevalues

 addEmptyChoice(ambiguitychoices)

 end if

 //Add all choicevalues separately in a choice

 //and add all choices to ambiguitychoices list

 createChoicesForChoicevalues(ambiguitychoices)

 end else

end generateAmbiguitychoices

Code 3: Generation of ambiguity choices in pseudocode.

3.2.1 Relations between Ambiguities

There can be more than one ambiguous definition for an UML element and a par-

ticular feature. To look upon every possible solution for an UML element and its

feature, each ambiguity must be considered separately as well as combined with all

others. The combination of an ambiguity with others simply means creating valid

combinations of their choicevalues regarding their selected relation kinds. In this

context valid does not mean the set of choicevalues will not causes inconsistencies,

but that the result is valid in terms of the ambiguities relation kinds.

Accordingly, a choice for a location is a solution generated over all owned ambigu-

ities and their choicevalues. Thus, a choice describes a collection of choicevalues

UML and Ambiguities

 38

for a location. In general, there are no preferences for a certain choice. However,

the designer has the opportunity to eliminate choices by defining constraints. This

is part of a reasoner concept and will be discussed later in chapter 3.3 Reasoning

over UML Models with Ambiguities.

To understand the basic approach of the algorithm, respectively to generate choices

for a location, pseudocode is used and is formulated in Code 4.

The original value of an element and its feature, if one exists, have also to be con-

sidered here and thus, have to exist in the combinations. The existing original value

is called M (= mandatory) accordingly to Software Product Lines, where mandato-

ry features cannot be omitted without violating the model.

For a choice generation the assumption exists, that there is a mandatory value for

the location owner and its feature – otherwise the algorithm would become too

complex.

generateCombinations()

begin

 //A list for mandatory values of a UML model element and its

 //a feature

List mandatorylist = new List()

//All choices of a location

List choicelist = new List()

//Add existing values of a feature into a list

addMandatoryFeatureValue(mandatorylist)

 //If a choicevalue is a mandatory value, it needs to be removed

 //elsewise it cannot be treated as optional

removeAllChoicevalues(mandatoryList,choiceList)

//Feature with multiplicity greater one (f.e. ownedOperation)

if isLocationFeatureMultiplicityGreaterOne() then

 //add a single choice of mandatory values

addMandatoryChoice(choiceList)

UML and Ambiguities

 39

for i = 0 to allAmbiguities.length

Ambiguity ambiguity = allAmbiguities(i)

//Iterate over all ambiguitychoices and merge with choicelist

for j = 0 to ambiguity.allChoices.length

Choice ambiguitychoice = ambiguity.allChoices(j)

//Combine all choicevalues of choices

 for k = 0 to choicelist.length

Choice locationchoice = choicelist(k)

//Create a new choice with combinations of

//choicevalues of ambiguityChoice and

//locationChoice

 Choice newchoice =

mergeChoicevalues(locationchoice, ambiguitychoice)

//Adds the new choice to the choiceslist if there exists

//no choice with the same choicevalues

 if notExistInChoicelist(newchoice) then

 addToChoices(newchoice)

 end if

end for

end for

end for

 //Feature with multiplicity exactly one (f.e. class)

for i = 0 to allAmbiguities.length

//Iterate over all ambiguities to add their choices in

//location’s choice list

 Ambiguity ambiguity = allAmbiguities(i)

 for j = 0 to ambiguity.allChoices().length

Choice ambiguitychoice = ambiguity.allChoices(j)

//Add if there exists no choice with the same

//choicevalues

 if notExistInChoiceList(ambiguitychoices(j)) then

UML and Ambiguities

 40

 addAmbiguityChoiceToChoiceList()

end if

end for

 end for

end if

//Mark choice as invalid if it violates relation kind

findInvalidChoices()

end generateCombinations

Code 4 The choice generation in pseudocode.

The generation of all choices for a location is separated into two sections. First, the

mandatory feature value(s) of the location owner are added together to form a sin-

gle choice. If one of the choicevalues of an ambiguity is found in that list, it must

be removed from the mandatory list and cannot be considered as a mandatory value

any more. This is due to the fact that a choicevalue must always be treated as an

optional user-defined value. Otherwise it would occur in any choice of the depend-

ing location. This may result in a location that has only choices which are invalid,

e.g. if it is based on an ambiguity with relation kind xor that says that its

choicevalues can never be combined without violating the xor relation. Due to this,

the idea is to remove the choicevalue from the mandatory list; this way choices

with and without that value can exist, leading to valid choices in terms of all rela-

tion kinds of ambiguities.

The second section is separated into features with a multiplicity greater one (f.e.

ownedOperation of a UML class) and with exactly one (f.e. ownership between

two UML elements). The section for the multiplicity greater one features seems

more complicated. In terms of a feature with multiplicity exactly one, each choice

of all ambiguities is simply added to the location’s choice list, as long as no choice

with exact the same choicevalue exists.

For a feature with a multiplicity greater one, the main idea is to iterate over all

ambiguities for a location and to combine all choices of an ambiguity with the ex-

isting ones. Accordingly, the iteration starts with a choice containing the mandato-

ry values as choicevalues. The ambiguity choicevalues of each choice will be com-

bined with the already generated choices of the location. Thus, each choice con-

UML and Ambiguities

 41

tains the mandatory choicevalues. Additionally, there are choices with ambiguity

choices and mandatory choicevalues. All choices of an ambiguity will be combined

with all other ambiguities and their choices by merging both choices’ choicevalues

together to create a new choice.

The last part of a choice generation is to filter all generated choices and to invali-

date them if one of them violates a relation kind of any ambiguity.

The following simplified example shows how to generate choices of a location

with a single ambiguity and among different ambiguities to get valid choices in

terms of features with multiplicity greater one. Features with a multiplicity exactly

one are not considered any more, because their choices always consist of only one

choicevalue.

All important information of ambiguities, which are owned by a location to con-

duct a choice generation, is formulated by the following expression:

L à {(xor, {y,z}), (opt, {a,b})}

That expression can be read as:

For location L there exists an ambiguity with a relation kind xor, choicevalues y

and z; there exists a second ambiguity with relation kind optional, choicevalues a

and b.

The ambiguity for location MP3Player+OwnedOperation, with the relation kind

optional, and the single choicevalue add(), taken from Figure 14 expressed in the

same way reads as follows:

MP3Player+ownedOperation à {(opt, {add()})}

In the given example the mandatory value (M) for the location

MP3Player+OwnedOperation is the operation play. This operation exists in both

variants of the defined mp3 player scenario illustrated in Figure 8 and Figure 10.

Figure 15 depicts the two choices symbolised by rectangles, which are derived

from the mandatory value and the defined ambiguity. Since the relation kind of the

ambiguity has the value optional, the first choice holds only the mandatory value

UML and Ambiguities

 42

play(). The second choice has two choicevalues: play() and add(). The two choices

are valid in terms of the relation kind of the defined ambiguity, because in both

choices the add operation exists or does not exist. This is the definition of the op-

tional relation kind value in a nutshell. Additionally, there always exists a manda-

tory value, in this case the play operation.

Figure 15: Choices for a single ambiguity.

While the choice generation of a location with a single ambiguity seems very easy,

generating choices of more than one ambiguity for a location is more complex. To

exemplify a more complex aspect it is mandatory to define another ambiguity for

the location MP3Player+OwnedOperation. The following ambiguity describes the

design decision of another operation in the MP3Player class.

MP3Player+ownedOperation à {(xor, {pause(), stop()})}

The design decision is ambiguous because of the mutually exclusive operations

pause and stop. The pause operation offers the functionality to pause and continue

playing a current mp3. However, the stop operation just stops a current mp3 song;

if the play operation is called, the mp3 will start at the beginning. Of course it

would be more user-friendly to offer both opportunities, but for this simplified mp3

player scenario, one opportunity suffices.

The ambiguities can be expressed as follows:

MP3Player+ownedOperation à

{(opt, {add()}),(xor, {pause(), stop()})}

Figure 16 shows the choices of both combined ambiguities.

UML and Ambiguities

 43

Figure 16: Choices for two combined ambiguities.

Based on the two ambiguities and their relation kinds, there are six choices. The

first and the second choice also exist in the choices of the single ambiguity. In the

next step the question whether they are consistent in terms of the second ambiguity

will be discussed. First, they are used to generate the next choices for the second

ambiguity. Choice 1 is now combined with the choicevalues of the second ambigu-

ity stop() and pause(). Since both operations cannot exist in the same choice (be-

cause of the relation kind xor) they are combined separately with the mandatory

value play() (choice 3 and choice 4). Analogous to that, choice 5 and choice 6 are

generated by combining choice 2 with all choicevalues of the second ambiguity

stop() and pause().

As mentioned before, it is important to know which choice is valid for each defined

ambiguity and its relation kind. In the case at hand, the second ambiguity has a

relation kind value xor; and if a choice without exactly one of the ambiguity’s

choicevalue existed, the ambiguity relation kind would be violated. In choice 1 and

choice 2 there is neither a stop operation nor a pause operation. This may not cause

inconsistencies in the UML model, but it will cause them in the designer’s ambigu-

ities definitions. Thus, both choices invalidate the second ambiguity and can be

omitted in any further validation or reasoning steps.

Another possibility of generating invalid choices is the existence of ambiguities

where choicvalues would be mutually exclusive, but end up in one choice due to

the combination of two ambiguities. This can happen if equal choicevalues exist in

more than one ambiguity for the same location while featuring a relation kind value

xor. To illustrate this problem the following two ambiguities are defined:

UML and Ambiguities

 44

MP3Player+ownedOperation à {(opt, {pause()})}

MP3Player+ownedOperation à {(xor, {pause(), stop()})}

The first ambiguity for the location MP3Player+OwnedOperation has an optional

pause operation, the second one features two mutually exclusive operations called

pause and stop. In addition, Figure 17 depicts the combined choices of both ambi-

guities’ choicevalues. The first and the second choice of the first ambiguity are

combined with the choicevalues of the second ambiguity, hence, stop and pause.

Figure 17: Example of invalid choices for two combined ambiguities.

Due to the fact, that there exists a pause operation in both ambiguities, it also oc-

curs in the second choice. Combining the two ambiguities leads to choice 4. In this

choice, pause and stop are selected together in a single choice, thus invalidating the

relation kind value xor defined in the second ambiguity.

3.3 Reasoning over UML Models with Ambiguities

The previous section dealt with the Ambiguity Concept and introduced its main

components. Furthermore, it described how Egyed et al. developed an approach to

reason over design models with ambiguities, choices, and consistency rules, called

Ambiguous Reasoning (AR) [3]. This chapter deals with the algorithm of AR and

provides examples to illustrate how the reasoning process is conducted.

It is essential to assume that there exists a model repository where the defined

model and its components are stored. Furthermore, all ambiguities have to be de-

fined with the Ambiguity Concept and are complete. Complete means they depend

on a location have a set of or at least one choicevalue(s) and a relation kind. In

Addition, all choices are generated as explained in 3.2 The Ambiguity Concept.

UML and Ambiguities

 45

The particular algorithm and its basic concept taken from Egyed et al. [3] will be

explained in the context of CSPs. In terms of a CSP, ambiguities can be considered

as variables and different design decisions, so called choices, as values of a do-

main. Further, in a CSP a constraint is a condition that returns true or false for a

given set of variables.

However, in a consistency rule for an UML model there are no exact definitions of

possible values that must be fulfilled: it is a more generic approach. That means

that a rule for an UML model de facto provides navigation instructions to identify

affected elements and properties. [3] Thus, an ambiguity and its choices are not

defined as a set of possible values, but through the validation; choices can be en-

countered and can be used to navigate through a model as well.

An ambiguity and its choices can be considered as unique elements. Egyed et al.

introduce the type pairings. A pairings represents one or more sets of an ambiguity

and a choice pair.

Parings = {(Ambiguity, Choice1), (Ambiguity, Choice2)}

 In the case of the example illustrated in Figure 13 and its derived ambiguity, there

exists the following set of parings:

A1 = (add()+class, xor, {MP3Player, MP3Playlist})

ParingsA1 = {(A1, MP3Player),(A1, MP3Playlist)}

There are two pairings for the ambiguity called A1. Furthermore, they can be used

to define so called determinations (Egyed et al. called it Assignments) for the vali-

dation process. A determination is a selection of a particular pairing taking place if

an ambiguous location is found during an evaluation. Thus, a determination is a

function that takes an ambiguity and returns a particular choice. It can be expressed

as follows:

Determination = Ambiguity à Choice

UML and Ambiguities

 46

A concrete determination for ambiguity A1 is defined as:

Determination1 = A1 à MP3Player

Determination2 = A1 à MP3Playlist

Additionally, a constraint can be evaluated to a Boolean condition, e.g. in a CSP.

As mentioned before, in a CSP a constraint is a condition that returns true or false

over a given set of variables. Furthermore, a determination can be used to evaluate

a constraint with the determination’s particular choice to true or false. Thus, a con-

straint is evaluated by taking the choice as input and as current value for the current

evaluated location.

Concerning the reasoning process, a particular reasoner takes a model element

from a model repository and a consistency rule as input and performs reasoning

steps. Hence, the AR mechanism applies the model element from the repository if

there no ambiguity or reverse ambiguity for the current model element and feature

(location) exists. If there such an ambiguous location exists, the generated choices

are used instead of repository values and the evaluation is performed with any

choice.

Due to the fact that elements affect one another a choice and a depending

choicevalue that is ambiguous as well can exist at the same time. The reasoner

works iterative, meaning, that it stops if an ambiguous choicevalue and feature is

found that affects the current location. In this case it performs the same evaluation

with all depending choices for the new ambiguous location (choicevalue) and so

on.

If the evaluation of a choicevalue returns a negative result, the whole choice and all

other choices, which enfold the same choicevalue are marked as invalid. Further-

more, the reasoning process must be conducted again to invalidate all those choices

enfolding the invalidated choicevalues. Since choicevalues can occur in many

choices, it is necessary to keep track of all occurrences, so that the remaining

choices can be marked as invalid as well.

The following pseudocode snipped in Code 5 depicts the AR algorithm in a simpli-

fied way.

UML and Ambiguities

 47

validate(Constraint c, Determination d)

begin

 //Evaluate constraint with determination

isSatisfied = evaluate(c, d)

if isSatisfied then

 //Add d to all positive determinations for c

 satisfiedDeterminations(c).add(d)

end if

//Ambiguous location found

if ambiguityFound() then

 //Take choices and validate them

 for i = 0 to choices.length

 Choice choice = choices(i)

 if isChoiceValid() then

 validate(c, new Determination(choice))

 if d.hasInvalidValues()

 choice.invalidate()

 //Simplified: validate all positive determinations

 //for c again, because it may be the case that

 //evaluated choices are now invalid, respectively

 //contains of invalid choicevalues.

 validate(c, satisfiedDeterminations(c))

 end if

 end if

 end for

end if

end validate

evaluate(Constraint c, Determination d)

begin

//Values = choicevalues

hasInvalidChoicevalue = evaluateChoicevalues(c,d)

UML and Ambiguities

 48

if hasInvalidChoicevalue then

 //Invalidate choicevalue to eliminate a choice

 invalidate(d.invalidChoicevalues)

end if

end evaluate

Code 5: Ambiguous Reasoning in pseudocode.

However, to understand that evaluation process an example is essential. The first

rule of Table 1 affects the introduced sequence diagrams in Figure 9 and Figure 11,

respectively all message calls between lifelines. Accordingly, that rule defines that

the name of a message call must be an operation in the receiver’s class definition.

The first call named play between the lifelines d and c must be evaluated in terms

of the first rule. Since the evaluation of the second call named add() between c and

p is more complex, the detailed explanations of the first call play() will be omitted.

As a first step one needs to define all necessary ambiguities for the two variants of

the mp3 player scenario. The ambiguity expressing the variable target lifeline of

the two sequence diagrams in Figure 9 and Figure 11 can be expressed as follows:

A2 = (add()+receiveEvent, opt, {c, p})

Additionally, there are two different class definitions of the MP3Player and

MP3Playlist in Figure 8 and Figure 10. The ambiguity expressing the different

class values for the add operation is defined as:

A1 = (add()+class, xor, {MP3Player, MP3Playlist})

The depending reverse ambiguities are:

A1.1 = (MP3Player+ownedOperation, opt, {add()})

A1.2 = (MP3Playlist+ownedOperation, opt, {add()})

UML and Ambiguities

 49

The evaluation process is conducted based on the four ambiguities. Figure 18 illus-

trates the reasoning process.

There are two generated choices with single choicevalues c and p. For each choice

a determination is derived on the base of which the first rule is evaluated. To eval-

uate this rule its definition states that in the operations of c and p an operation

named with the same name of the investigated message call must exist. The mes-

sage call name is add.

The reasoner evaluates the rule for the first choice c of type MP3Player. Thus, it

searches in all values for the feature ownedOperation of the class definition for the

MP3Player. Since the feature is ambiguous (due to the reverse ambiguity A.1.1)

the same evaluation process is conducted for that location.

With respect to the mandatory value play() there are two choices of A.1.1. The

first enfolds only the play operation, the second has two choicevalues, namely

play() and add().

To get back to the reasoning process, the first choice is used to evaluate the first

rule. The created determination with that choice can be considered as invalid. This

is due to a missing add operation in that choice. Accordingly, the second choice

(play(), add()) is applied. Here a choicevalue, respectively an operation named

with add, exist and the determination returns a valid result. Thus, the first choice

with choicevalue c is valid for the receiveEvent of the message add().

The reasoner do returns to the point where the next choice p must be evaluated.

The reasoning process for the second choice p is realised based on the first choice

p. Due to the defined ambiguity A.1.2 an ambiguous location is encountered by

searching for an add operation in the values of the ownedOperations feature of p.

Since there is no mandatory value the first resulting choice of A.1.2 is an empty

choice. This means that it contains no choicevalue in it. This is possible due to the

fact, that the add operation in A.1.2 is defined as optional. The second resulting

choice enfolds the add operation.

Due to an existing add operation in the second choice, the reasoner evaluates the

created determination to true. However, the first choice without an add operation is

evaluated to false.

UML and Ambiguities

 50

Figure 18: Reasoning process of the first consistency rule.

In conclusion, the model with respect to all defined ambiguities can be considered

as consistent related to the first consistency rule. However, the consistency is only

guaranteed with adequate choices. Thus, AR can be used to show what choice is a

valid selection in case of design decisions or defined ambiguities affecting one

another. Due to that, in practice the designer can be supported in terms of the selec-

tion of a particular decision and can reject incompatible decisions.

Implementation

 51

4 Implementation

This chapter deals with the implementation of the Ambiguitymanager tool, a plugin

for the Rational Software Architect. The Ambiguitymanager realises the Ambiguity

Concept and provides ambiguity management. In addition, the Ambiguitymanager

is linked to an existing model analyser tool. Together they can be used to conduct

consistency checks, i.e. checking if the model remains valid with different combi-

nations of design decisions.

First, an overview about main functionalities of the Rational Software Architect

will be provided. In a second step the Ambiguitymanager and the core requirements

of that plugin will be pointed out. In the following chapter, reasoning results so

called determinations will be explained. In addition, useful information for a de-

signer that can be derived from that output will be mentioned. Finally, limitations

of the implementation and the connection to an existing model analyser will be

described.

4.1 Rational Software Architect

In this subchapter the IBM Rational Software Architect (RSA) [16], a modelling

tool for software systems, will be introduced and an overview about its architecture

will be provided.

The RSA is a modelling tool for software systems and property of the IBM Ration-

al Software [17] division. With the RSA a software designer can specify architec-

tural and behavioural properties of a system with the UML. A software designer

has the ability to choose from a huge number of representations of development

artifacts offered by the RSA. [3]

The RSA is an Eclipse-based modelling tool and contains perspectives such as e.g.

a Java, a Debug, and a Repository perspective also a Modelling perspective in ad-

dition to the standard Eclipse [34]. The screenshot depicted in Figure 19 shows the

Java perspective of the RSA.

Implementation

 52

Figure 19: The Java perspective of the RSA.

As visible above, the architecture of the user interface looks similar to a plain

Eclipse IDE with a Project Explorer on the left and different views at the bottom

such as a Call Hierarchy view and a Tasks view.

As mentioned before, the RSA also offers a Modelling perspective depicted in Fig-

ure 20. The Project Explorer on the left shows current modelling projects and all

UML elements in a tree structure. An editor for graphical representations of UML

model elements and their properties is situated in the middle. Several other views

are placed at the bottom; one example is the Property view enabling the user to

manage and browse through model elements’ properties.

Implementation

 53

Figure 20: The Modelling perspective of the RSA.

On the right there is a pallet of a range of UML model elements which can be in-

serted into a project via the drag and drop mechanism.

4.2 The Ambiguitymanager Plugin

In chapter 3 UML and Ambiguities the Ambiguity Concept was introduced and a

running example providing a detailed description of the process of adding ambigui-

ties to UML design models was presented. As mention in chapter 2.3 Background,

Egyed et al. [3] first came up with the idea of adding unsolved design decisions to

UML models.

While they developed a plugin for the RSA to manipulate UML elements such as

classes, lifelines or class operations in terms of their UML features, there remain

some weaknesses in terms of the realisation and a missing graphical user interface.

One weakness of the plugin is that all different design decisions, so called ambigui-

ties, must be added manually and directly into the program code. There is no

graphical user interface facilitating the adding process. Additionally, the output of

the reasoning process is not presented in a user-friendly manner and all reverse

dependencies, so called reverse ambiguities for model elements, are not generated

automatically.

Implementation

 54

Based on these issues, the current chapter deals with the development of a plugin

for the RSA called Ambiguitymanager that will be connected to an existing model

analyser plugin to solve the weaknesses of Egyed et al. [3].

4.2.1 Requirements

In this subchapter, the five main requirements will be presented and their imple-

mented solution will be explained.

The five core requirements are:

1. Graphical user interface: Design and implementation of a graphical user

interface

2. Persistence: Persistence of ambiguities into a modelling project

3. Reverse ambiguities generation: Automatic generation of the reverse am-

biguities

4. Choice generation: Automatic generation of choices for a location

5. Model analyser connection: Connect plugin to existing model analyser

The first requirement describes the necessity of a graphical user interface to add

ambiguities to UML models. The second requirement defines that ambiguities must

be saved permanently into the current modelling project, thus enabling users to

access them later on. The third and fourth requirements deal with the solution

about how to generate reverse ambiguities and choices automatically, as discussed

in chapter 3.2 The Ambiguity Concept. The final requirement handles the connec-

tion between the Ambiguitiymanager tool and an existing model analyser to per-

form reasoning steps as introduced in 3.3 Reasoning over UML Models with Am-

biguities.

4.2.1.1 Graphical User Interface

The first requirement describes the necessity for a graphical user interface to man-

age ambiguities of UML models. Designing and implementing a graphical user

interface means developing an intuitive and user-friendly interface for the RSA,

allowing a user to easily manage ambiguities for UML elements. That means, in

Implementation

 55

detail, to provide a visualisation of the defined ambiguities, the generated reverse

ambiguities as well as choices to the designer, to let him track reasoning steps, and

to present him an overview about the reasoning output, the so called determina-

tions.

The Ambiguitiymanager plugin consists of four views of the type ViewPart [35].

The AddView

With the first view, as depicted in Figure 21, the designer is enabled to add ambi-

guities to an UML model element. Additionally, this view is also used to edit am-

biguities.

The designer can chose the UML element simply by selecting it in any editor of the

RSA.

Figure 21: The AddView to add ambiguities to UML model elements.

The possible features of the selected element a user can create an ambiguity for are

available in the first combobox. They were defined via an XML file for each UML

model element. The decision for a XML driven feature definition was made due to

problems in the EMF specification. This means that there are problems with unde-

fined (null value) features for the reverse ambiguities. Thus, they need to be de-

fined manually – it is impossible to generate them introspectively by their class

definitions. On account of that, the opposite feature of a class and its ownedAttrib-

ute feature is not defined as the attribute’s class feature, thus, the depending get

operation simply returns a null value.

Implementation

 56

The feature definition and the persistence of ambiguities are realised with the same

XML file. The persistence of ambiguities will be discussed later in this subchapter.

The following simplified code snippet Code 6 shows such a definition for a UML

class and its features isAbstract, ownedOperation, and ownedBehavoir.

<Class literal="CLASS">

 <Feature label="is Abstract" name="isAbstract" />

 <Feature label="Operation" name="ownedOperation"

 opposite="class" />

 <Feature label="Behavior: state machine" name="ownedBehavior"

 opposite="owner" value="STATE_MACHINE"

 diagramKind="STATECHART_LITERAL" />

</Class>

Code 6: XML feature definition.

The first entry after the xml tag describes the UML element type for which the

following feature tags are defined. The literal [36] tag has the value “CLASS” and

represents UML classes. The next tags are used for the definition of UML features

of model elements. The first feature tag represents the isAbstract feature of a class

that is usually visualised through the UML keyword {abstract} over a class name

in a class rectangle and thus describes if the class is abstract.

The first xml attribute of the feature tag is called label and is used only for the

display in the feature combobox. The name attribute represents an original EMF

feature reference name. Since the isAbstract feature has always a primitive value

(Boolean) and no reverse ambiguities for choicevalues must be created, there is no

need to make any statements about an opposite feature.

The second feature tag represents the ownedOperation feature of a class, thus the

name attribute holds that EMF feature name. Furthermore, the value of the attrib-

ute label is operation. The feature ownedOperation describes operations of a class.

An operation has a complex class type for which a definition for its reverse ambi-

guities and thus its opposite feature must exist. In this case the opposite feature of

the ownedOperation feature is the operation’s class feature (ownership of an opera-

tion).

Implementation

 57

The last feature tag defines the ownedBehavoir feature of UML classes. This fea-

ture represents behavioural properties of a class and is visualised through a state

machine. The feature tags label, name, and opposite attributes are defined in a

similar manner as in the previous feature. The value attribute describes a type for a

new added choicevalue and is represented by a reference literal. The diagramKind

attribute is required if the choicevalue must be contained in a certain diagram as it

is here the case.

Continuing with the description of the usage and functionalities of the AddView,

the designer can select an ambiguity relation kind by choosing the appropriate one

from the second combobox. He can also type ambiguity’s name and add new

choicevalues or select one of the existing matching UML model elements from the

whole model project. Matching means here that the selected UML element and its

type must be compatible with the selected feature and its required element type.

As a example, let us assume the choicevalue play() of the following ambiguity

existed in another class and the designer would like to select it as a choicevalue for

the MP3Player and its feature ownedOperation.

MP3Player+OwnedOperation à {(opt, {play()})}

The required element type of this feature is an UML operation and thus, the de-

signer should only select UML model elements from the same type. This is ensured

by only adding elements if their type is compatible.

The AmbiguityView

The second view implemented for the Ambiguitymanager is the AmbiguityView

shown in Figure 22. The AmbiguityView offers a designer a detailed overview tree

of all defined ambiguities and a separate tree of ambiguities for each model ele-

ment and feature. The latter updates its input by changing the selection of a model

element in any editor of the RSA. Additionally, functionalities exist to delete am-

biguities, edit a selected ambiguity (the AddView is called with the selected ambi-

guity), and resolve a selected ambiguity. The latter functionality realises the trans-

formation of an ambiguity definition and the selected choicevalues into the depend-

ing location.

Implementation

 58

Figure 22: The AmbiguityView to manage defined ambiguities.

In addition, the designer is offered two possibilities how the Ambiguitymanager

should behave if a model changes. An example of a model change is the alteration

of an element’s name. Since there might be choicevalues/model elements selected

for an ambiguity and visualised with its name, it is necessary to update them and

display them again.

The first possibility is to react immediately and automatically on model changes

and to update all ambiguities by loading all persistent ambiguities from a project.

This is realised through a listener that reacts on all model changes.

The second possibility is to load all ambiguities manually by clicking an update

button. These two possibilities are realised with a button to enable and disable the

automatic update function. In projects with a huge number of model elements and a

huge number of defined ambiguities it is recommended to update the ambiguities

manually. This is due to the fact that the RSA notifies its listeners even in case of

minor changes e.g. when a model element changes its position in a class diagram.

Since a model changes very often during the modelling phase, updating it even if

an update would not be necessary is more expensive in terms of resources.

Finally, there is a functionality to save all defined ambiguities into a plain format-

ted txt-file. However, this is only important for documentation aspects, since ambi-

guities are persisted directly into a project folder as well

The DeterminationView

The DeterminationView is the third view developed and displays generated choices

sorted by location and reasoning output, respectively the determinations for a rule

(constraint) of the reasoning process. This view is depicted in Figure 23.

Implementation

 59

Additionally, it is possible to save determinations and generated choices into a

plain txt-file. The reasoning process, also known as validation or consistency

checking, can be conducted from this view by clicking one of the two possible play

buttons on the right panel. The difference between these two buttons is that the

right one validates the model again, based on the output determinations from a

previous validation without resetting its determinations. This means invalid choic-

es will not be considered any more. The other play button performs same con-

sistency checking steps again. How the reasoning is performed will be discussed

later in chapter 4.2.1.5 Model Analyser Connection.

Figure 23: The DeterminationView to generate the choices and to validate.

The ReasoningView

The ReasoningView, shown in Figure 24, is the fourth view of the Ambiguityman-

ager tool and simply displays the conducted validations steps in a formatted over-

view. Additionally, this view shows the duration of a reasoning process.

Figure 24: The ReasoningView to see all validation steps.

Implementation

 60

4.2.1.2 Persistence

Ambiguities must be saved permanently in order to work with them after a pro-

gram has been shut down. In the Ambiguitymanager tool ambiguities are persisted

directly into a folder in the current project. The persistence as well as the feature

definition are XML-driven, meaning information must be defined manually. These

definitions describe information, e.g. whether a container is required to persist new

choicevalues (e.g. class operations need a container such as a class to exist) or

whether a choicevalue is containable (e.g. a class can or cannot be packed into

another class).

The following simplified code snippet Code 7 shows such a definition for a UML

class and its feature superClass as well as for a UML message and its feature re-

ceiveEvent. The feature superClass simply represents a possible superclass of a

class. Since a class can have only one superclass, this feature can describe just one

relation to another class. The first XML attributes label, name, and opposite are

explained in 4.2.1.1 Graphical User Interface and are defined accordingly.

Additionally, there is a new attribute called containable. The designer can choose

UML elements from the project as choicevalues for an ambiguity. New UML ele-

ments might have to be created for a single ambiguity. The fact that some UML

elements cannot physically exist in a project without a container, respectively an

owner element, may be a problem. An UML operation, to just mention one, cannot

be alive in a project without a component that holds it in its feature ownedOpera-

tion. Thus, there must be an ownership relation for an operation and another ele-

ment. There also exist UML elements, such as classes or interfaces, where an own-

ership is not required. This is a result of the fact, that there exists an ownership

between the project instance and a class or interface. That means that there de facto

is no need to define a certain element type to persist them.

The basic idea to solve that ownership issue is to create such a container element

based on an ambiguity owner’s type and ambiguity’s feature. This is due to the fact

that if an ambiguity for a UML element and a certain feature exist, it must be pos-

sible to take the same UML type as the ambiguity’s as well as the same feature to

encapsulate the newly created choicevalue . Thus, the element with the same type

of the ambiguity’s owner functioned as a helper container, respectively as a tempo-

rary owner. In the case of the feature superClass the required type is a UML class

and classes must not be packed into another element to be considered alive in the

Implementation

 61

project. Thus, the value of the container attribute is defined here as FALSE while

the default value, respectively a no value, stands for TRUE.

If a container for a choicevalue must exist and the type of the selected feature has a

type with which it is impossible to create a concrete UML element instance (meta

types), an additional container type must be defined (called container in the XML

definition). This is the case, if an element of a feature cannot be directly user-

manipulated, such as an UML callevent and its feature operation.

In addition, the feature of a container (in the XML definition called featurecontain-

er) has to be defined so that a choicevalue can be packed into it.

Another attribute that has not been mentioned before is called type. It is required if

an element type of a feature is generated introspectively from a feature definition.

The type can be a meta-type such as an interface; in this case creating instances

from it is not allowed. Thus, a type of a choicevalue must be defined to create a

concrete instance and to persist it into the project. Unfortunately, as of yet that type

is limited by its definition and cannot be changed at runtime if another type is re-

quired in a certain case.

<Class literal="CLASS">

 <Feature label="Super Class" name="superClass"

 containable="FALSE" opposite="NO" />

</Class>

<Class literal="MESSAGE">

 <Feature label="Receive Event (covered)" name="receiveEvent"

 nestedfeature="covered"

 nestedtype="MESSAGE_OCCURRENCE_SPECIFICATION"

 value="LIFELINE" diagramKind="SEQUENCE_LITERAL"

 opposite="NO"/>

</Class>

Code 7: XML persistence definition.

Another interesting element for the persistence is an UML message. A message, as

the one depicted in Figure 3, is a call between lifeline instances.

In addition to the already explained attributes name, label, opposite, and container

there are additional ones called value, diagramKind, nestedFeature, and nest-

Implementation

 62

edType, The value attribute describes the type for a new added choicevalue and is

represented by a reference literal. The diagramKind attribute is required if a

choicevalue must be contained into a certain diagram

In some cases, features cannot be accessed directly due to the fact that they are

nested in a super-feature. Thus, the element type of the super-feature consists of

another complex type. On account of that, the required type of a choicevalue must

be defined additionally. Due to this, the sub-feature is described by the nestedFea-

ture attribute and the nestedType attribute for the type of the sub-feature. Hence,

the element type of a selected choicevalue is defined and an appropriate element

can be created.

In the feature definition, however, this issue can be found in the description of an

UML message and its feature receiveEvent. That feature does not require an ele-

ment of the type receiveevent. It requires an element of the type of a receiveevent’s

feature named covered. That covered feature element type is the required one of

the feature receiveEvent of the UML message. Accordingly, the element type of

the covered feature is called MESSAGE_OCCURRENCE_SPECIFICATION and

has to be taken instead of the type receiveevent.

The question, why there is a need to create concrete choicevalues instead of plain

strings that can be parsed to create concrete instances if required, may arise. One

answer is that it might be useful to manipulate choicevalues directly with the RSA

property editor in order to change their values or to use them for other ambiguities.

If the whole choicevalue must be parsed every time it is used to see its properties

via the editor, the performance would be affected. Additionally, the selected solu-

tion is more appropriate in terms of further operations such as some reasoning pro-

cesses or the resolve of a certain location choice and its choicevalues, where the

concrete instance is required.

The screenshot in Figure 25 shows the persistence of ambiguities in the project

explorer of the RSA. There is a folder called Ambiguities where all ambiguities and

their choicevalues are stored. For each UML model element a folder is created. The

folder name is a combination of a keyword (<<MP3Player>>) and its model ele-

ment identification number (id). While the name of an UML element might be

changed, an id never changes and is unique for all projects in a workspace.

The ambiguities for a model element are stored in a nested folder and named ac-

cording to the user-defined ambiguity name (Ambiguity1). This folder has two

Implementation

 63

keywords the relation kind and the feature name (<<xor>>, <<ownedOpera-

tion>>). Additionally, there is another enumeration folder called References, con-

taining literals of ids of choicevalues, which refer to created choicevalue elements

in a folder called NEW or to existing choicevalues from a project.

The NEW folder contains container elements where created choicevalue elements

are stored and choicevalue elements, which must not be packed into a container. To

separate choicevalues per model element (ambiguity owner), the container is

named with the id of the ambiguity owner. That results due to the possibility that

choicevalue elements belong to different locations.

Figure 25: The persistence of ambiguities in the RSA project explorer.

4.2.1.3 Reverse Ambiguities Generation

The reverse ambiguity generation is quite simple. Its implementation was described

in chapter 3 UML and Ambiguities. For each defined choicevalue a reverse ambi-

guity is created if the choicevalue has a complex type. If the EMF opposite feature

Implementation

 64

cannot be used because it is missing, the defined opposite feature of the XML file

is used as mentioned before. Furthermore, the only choicevalue for a reverse ambi-

guity is the owner of the origin ambiguity and its relation kind has always the value

optional. A reverse ambiguity is treated like any other manually defined ambiguity

concerning the choice generation or any reasoning processes. There is only one

exception: modifications via the graphical user interface are not allowed as in the

case of plain ambiguities.

4.2.1.4 Choice Generation

The choice generation is implemented as described in 3.2 The Ambiguity Concept

and deals with all combinations of possible choices of locations. The choices are

presented in a user-friendly manner in the left tree of the DeterminationView as

depicted in Figure 23.

4.2.1.5 Model Analyser Connection

The requirement to connect the Ambiguitymanager to an existing model analyser

tool is realised through the ModelAnalyzer plugin that introduced in 2.3.2. The

ModelAnalyzer. Egyed et al. [5] developed the ModelAnalyzer plugin to check the

consistency of models with respect to particular rules introduced in 2.2.1 Con-

sistency Rules. The ModelAnalyzer uses a consistency rule as a black-box con-

straint and identifies affected model elements.

Concerning reasoning over UML models with ambiguities, the ModelAnalyzer can

be used to check if a given choice fulfils a constraint. The analyser operates similar

to the normal model analysing mechanism explained in 2.3.2. The ModelAnalyzer.

The reasoning over ambiguities and choices is called Ambiguous Reasoning (AR)

[3]. This approach has been evaluated in [3]. AR is introduced in 3.3 Reasoning

over UML Models with Ambiguities.

The example introduced in chapter 3.3 is implemented with the Ambiguitymanag-

er. Figure 26 depicts the defined ambiguities in the Ambiguitymanager.

Implementation

 65

Figure 26: Visualisation of ambiguities.

Additionally, Figure 27 depicts the choice generation (left) and the determinations

(right) of the example implemented with the Ambiguitymanager.

Figure 27: Visualisation of choices and determinations.

4.2.2 Limitations

While developing the Ambiguitymanager limitations in terms of expressions re-

strictions and scalability problems were encountered. The first means in detail, that

Implementation

 66

a grouping mechanism of ambiguities, which depend on one another or must al-

ways be selected together does not yet exist. This issue will be discussed in 6 Prob-

lems and Limitations.

Furthermore, a problem with the RSA occurs by generating choices for a location.

The approach of the choice generation is not scalable in terms of the combinations

of all ambiguity choices and their visualisation in the DeterminationView. The

following example in Table 3 provides an overview of the difficulty3:

3 ambiguities (relation kind optional)

10 choicevalues per ambiguity

2^10 choices per ambiguity = 1.024 choices

Combination of all 1.024^3 choices

= 1.024*1.024*1.024

= 1.073.741.824 choices per location (+ 3.072 ambiguity choices)

Table 3: Determination of choices.

Thus, if there are three ambiguities for a location with 10 choicevalues, there are

1.073.741.824 choices and even more choicevalues, which must be visualised via a

graphical tree. At the moment, this is solved by a configuration of the graphical

tree, meaning that its items are closed per default. Thus, all choices and choiceval-

ues have to be visualised only once the depending parent item is opened.

3 That calculation does not consider duplicates of choices. Choices are here treated as

unique elements and are not equals if they enfold the same choicevalues.

Case Study

 67

5 Case Study

The Ambiguity Concept discussed in 3.2 The Ambiguity Concept provides an ap-

proach to express different design decisions of UML models and their elements.

The running example introduced in 3.1 Illustration and Running Example consists

of 12 UML model elements and is reproduced in the RSA with the assistance of the

Ambiguitymanager.

To prove that the Ambiguity Concept and the Ambiguitymanager can handle a

wider range of model elements and their ambiguities, a huge case study has been

implemented. This case study was based on a requirements document for the Bar-

bados Crash Management System Product Line (bCMS-SPL) from Istoan et al.

[37].

Istoan et al. [24] modelled based on the bCMS-SPL requirements document a

product line and a reference variant in an object-oriented way with the UML. The

reference variant consists of functionalities, which can be found in any product of

the bCMS-SPL. Thus, they are mandatory for any derived product. All models

created for the reference variant can be used as a basis for defined variation points

and additional behavioural and structural properties.

Based on the resulting models, the Ambiguity Concept is used to express the varia-

tion points of the product line. The case study consists of hundreds of model ele-

ments and their class, state machine, and sequence diagrams. While the require-

ments document of the case study also encloses non-functional requirements, this

thesis will focus on the functional aspects of the bCMS-SPL.

The bCMS-SPL describes a crisis management system to handle accidents on

roadways in terms of the coordination of firemen and policemen. Policemen and

firemen have different responsibilities and their concurrently executed tasks must

be coordinated in an effective and efficient way. [24]

To express variability with the Ambiguity Concept understanding the entire back-

ground and intension of a system’s behaviour and structure is not mandatory. Thus,

the expressed ambiguities are based on textual descriptions, the results of defini-

tions of variation points, and not on the requirements document from Istoan et al.

[37].

This chapter provides an overview about the main components of the focused case

study. The derivation of ambiguities from textual descriptions will be pointed out.

Case Study

 68

In addition, the solution found in the focused case study will be compared to the

realisation via the Ambiguity Concept. A section of resulting choices and determi-

nations of the reasoning process will be presented. Finally, strengths, weaknesses,

problems, and limitations concerning the Ambiguity Concept and in terms of rea-

soning over a huge number of model elements and ambiguities will be discussed.

5.1 Overview

In this subchapter an overview about system components such as the domain mod-

el of the bCMS-SPL will be provided. First, the domain model will be presented

and key elements will be introduced. In a second step, the depending feature model

and its variation points will be elicited.

5.1.1 Domain Model

In this section the domain model and its key elements will be presented. The do-

main model includes system components and physical elements. All components

are modelled accordingly with the RSA. Physical elements describe components,

which are outside the system and interact with the system in a certain manner.

Physical elements can be fire trucks, police cars, or victims, which have to be res-

cued.

The major components of the case study are two human actors, the Fire Station

Coordinator (FSCoordinator) on the fire station side and the Police Station Coordi-

nator (PSCoordinator) on the police station side. Both of them stand for the interac-

tion of human beings with the crisis management system. Additionally, the

FSCSystem class and the PSCSystem class build the centre of the product line. The

FSCSystem manages interactions between the FSCoordinator and the PSCSystem.

The PSCSystem class manages interactions between the PSCoordinator and the

FSCSystem.

Since, as mentioned before, understanding the background and intension of a sys-

tem’s behaviour and structure is not mandatory to express variability with the Am-

biguity Concept, there will be no further explanation of the classes and actors.

The case study captured key functional scenarios based on the requirements in

[37]. The functional requirements are described via sequence diagrams and show

the interactions between system and physical components such as the FSCSystem

Case Study

 69

and the FSCoordinator. The scenarios consist of seven main scenarios and addi-

tional, alternative, and exceptional behaviour. Alternative and exceptional behav-

iour generally can affect all scenarios such as if a connection between components

gets lost. The following scenarios are taken from Istoan et al. [24] and describe the

main scenarios of the bCMS-SPL.

1. PSCSystem and FSCSystem establish communication and identification of

coordinators.

2. PSCSystem and FSCSystem exchange crisis details.

3. PSCSystem and FSCSystem develop a coordinated route plan in a timely

fashion for number of vehicles to be deployed to specific locations with re-

spective ETAs (estimated time of arrival).

3.1. PSCSystem and FSCSystem state their respective number of fire

trucks and police vehicle to deploy.

3.2. PSCSystem proposes one route for fire trucks and one route for police

vehicles to reach crisis site.

3.3. FSCSystem agrees to route.

4. PSCSystem and FSCSystem communicate to each other that their respec-

tive vehicles have been dispatched according to plan (per vehicle).

5. PSCSystem and FSCSystem communicate to each other their arrival (per

vehicle) at targeted locations.

6. PSCSystem and FSCSystem communicate to each other completion (per

vehicle) of their respective objectives.

7. PSCSystem and FSCSystem agree to close the crisis.

For each scenario there is a depending detailed sequence diagram. By implement-

ing the case study, all sequence diagrams are modelled accordingly with the RSA.

Thus, there are eight sequence diagrams, which describe seven main scenarios and

one exceptional behaviour of the overall domain model. Existing loop conditions in

sequence diagrams are then omitted in the RSA. This is due to the fact, that loop

conditions do not have benefit in terms of expressing variation points with the Am-

biguity Concept. The key elements of the bCMS-SPL, respectively the domain

model, is represented by an UML class diagram and depicted in Figure 28.

Case Study

 70
Figure 28: Domain model of the bCMS-SPL.

Case Study

 71

Furthermore, there are six state machine diagrams for the PSCoordinator, FSCoor-

dinator, PSCSystem, and the FSCSystem. While four of them describe in detail all

possible states of these components, two additional state machine diagrams con-

cerning the connectivity of the PSCSystem and the FSCSystem are defined. The

additional two diagrams describe the availability of both systems in terms of a

communication channel, concretely, whether they are in a standalone mode or in a

collaborative crisis management mode. [24]

5.1.2 Feature Model

A feature model describes features of a product line and depicts its variation points

as discussed in 2.4 Related Work. The implementation of the bCMS-SPL case

study will focus on the functional features or rather on variation points.

Figure 29 provides an overview about the six features of the focused product line.

Four of them represent variation points; their textual description from [24] will be

used to express their requirements via the Ambiguity Concept. The four variation

points are P&F station multiplicity, Vehicles management, Vehicles management

communication protocol, and Crisis multiplicity. The domain model introduced in

5.1.1 Domain Model and its depending class, sequence, and state machine dia-

grams covers the requirements of two features, existing in every derived product

such as Communication establishment and Coordinator identification. Due to this,

they are not translated into ambiguities and will not be discussed any further.

Each of the four variation points and additional required class, sequence and state

machine diagrams are depicted with the RSA and their textual description are

transformed into ambiguities. Thus, there are 136 ambiguities, 75 reverse ambigui-

ties, 38,344 resulting choices, and 16,824,396 choicevalues.

In the next subchapter, one of the four variation points, respectively its feature, are

chosen to present it in terms of the Ambiguity Concept. The variation point Vehi-

cles management was chosen as a result of its complexity, i.e. that it comprises

require statements between features and their major complexity.

While there are a huge number of textual descriptions in terms of additional re-

quirements resulting from that variation point, only selected ones and the depend-

ing UML diagrams will be considered in this thesis.

Case Study

 72

Figure 29: Feature model of the bCMS-SPL.

Case Study

 73

5.2 Implementation and Adaption

In this subchapter the previously selected variation point Vehicles management is

expressed through the Ambiguity Concept. In addition, problems and limitations

concerning the Ambiguity Concept will be discussed. Furthermore, a comprehen-

sion between the approach to express variability in [24] and the Ambiguity Con-

cept will be outlined. Additionally, limitations concerning the Ambiguity Concept

in terms of its restricted expression language concerning textual feature descrip-

tions will be pointed out. The solution discovered in the course of the focused case

study will be compared to the realisation with the Ambiguity Concept. Additional-

ly, a section of resulting choices and determinations of a reasoning process will be

presented. Finally, advantages and disadvantages of the Ambiguitymanager and of

reasoning over a huge number of model elements and ambiguities will be dis-

cussed.

5.2.1 Vehicles Management Variation Point

The textual description of the variation point Vehicle management provides a sim-

ple usage of the Ambiguity Concept. There is no changes if the sub-feature No

send & receive is selected because it is already covered in the reference variant.

Thus, this thesis will focus on the sub-feature Other and its feature group.

First, structural changes and depending class diagrams will be discussed. In a se-

cond step, aspects concerning behavioural changes in sequence and state machine

diagrams will be expressed through the Ambiguity Concept.

Please note that ambiguities mentioned in the following sections act as representa-

tives for similar ambiguities. Such similar ambiguities will not be pointed out here,

but have been defined in the RSA.

Case Study

 74

5.2.1.1 Structural Changes

The following six sentences concern the structure of the bCMS-SPL and can easily

expressed through ambiguities.

1. Create a new class called DispatchService with certain operations.

To solve this requirement, an ambiguity is created for the model element

bCMSProject and its feature ownedElement. The bCMSProject represents the RSA

modelling project that comprises the whole case study. The possible choicevalue is

a new element called DispatchService and the relation kind is optional. The re-

quired operations are added to the DispatchService.

The ambiguity is formulated as:

A1 = (bCMSProject+ownedElement, opt, {DispatchService})

2. Add a relation to the PSCSystem and FSCSystem class.

Due to the fact that DispatchService does not yet exists in a class diagram, it has to

be inserted either into a new or the existing domain model to add relations to it.

Thus, associations from PSCSystem and FSCSystem to the DispatchService must

be created.

In addition, two ambiguities must be defined to express that created relations are

optional elements. Please note that class attributes and associations are considered

as equals in the EMF framework.

The ambiguities are formulated as:

A2 = (PSCSystem+ownedAttribut, opt,

{associationToDispatchService})

A3 = (FSCSystem+ownedAttribute, opt,

{associationToDispatchService})

Case Study

 75

3. Connect DispatchService with PoliceCar, FireTruck, and CitizenVehicle class.

According to the previous sentence, associations between PoliceCar, FireTruck,

and CitizenVehicle directed to the DispatchService must be created.

The ambiguities are formulated as:

A4 = (PoliceCar+ownedAttribute, opt,

{associationToDispatchService})

A5 = (FireTruck+ownedAttribute, opt,

{associationToDispatchService})

A6 = (CitizenVehicle+ownedAttribute, opt,

{associationToDispatchService})

Please note that it makes no difference whether ambiguities for DispatchService or

for those three classes are created in that way. This is due to the fact, that generated

reverse ambiguities of the two possibilities cover the other definition as well.

4. Tag DispatchService as optional due to the fact that there exists no way in the

UML to express optional UML elements.

This sentence is already expressed by the first sentence and its ambiguity:

bCMSProject either owns DispatchService or does not. Thus, DispatchService can

be considered as an optional element.

5. Connect the DispatchService with the sub-feature Other of Vehicle Manage-

ment to express that the class only exists if Other is selected.

The current sentence cannot be expressed via the Ambiguity Concept due to the

missing possibility to add require statements of different UML elements. If there

exists such a mechanism, an ambiguity could be created with a requires relation

and the two choicevalues DispatchService and all elements resulting of the feature

Other. That issue will be discussed in 6.3.2 Grouping Mechanism of Choices.

Case Study

 76

6. Tag every operation of DispatchService as optional.

In order to solve this requirement, ambiguities are created for DispatchService and

its feature ownedOperation. The possible choicevalues consists of each existing

operation in the DispatchService and the relation kind is optional. Only two of

them will be mentioned here.

The ambiguity is formulated as:

A7 = (DispatchService+ownedOperation, opt,

{policeCarDispatchOrder(), fireTruckDispatchedOrder()})

5.2.1.2 Behavioural Changes

This subchapter deals with behavioural changes in the domain model due to the

variation point Vehicle management. While the sub-feature No send & receive is

selected per default and does not affect the structural and behavioural properties of

the bCMS-SPL, the feature group Other does. Due to this fact, this section de-

scribes possible expressions of behavioural changes with the Ambiguity Concept.

In [24] behavioural aspects are modelled with sequence and state machine dia-

grams. The authors created a lot of new sequence diagrams with the UML optional

interaction fragment. This element allows a user to add optional parts to a se-

quence diagram, which are only present if a defined guard condition is fulfilled.

Accordingly, if the condition is evaluated to false, it is not present in the sequence

diagram.

For each sub-feature an optional interaction fragment is created. The guard condi-

tion of each fragment can be evaluated to true, if the depending sub-feature is se-

lected. For the sub-feature PSC send & receive the guard condition is expressed in

the following way:

"PSC send&receive" = selected

To express this variation point in terms of the sequence diagrams with the Ambigu-

ity Concept, all optional interaction fragments are created as well. There also ex-

ists the option to create a new fragment outside the sequence diagram of the refer-

Case Study

 77

ence variant. That means in detail, to add an ambiguity for the model element Do-

mainSequence and its feature ownedElement and to create all other lifelines, calls

between them, guard conditions, etc. without a visualisation as well. Thus, it would

be very hard to gain an overview about a model, respectively a sequence diagram,

without seeing the components and their relations.

However, there is an additional way of expressing optional behaviour without

modelling the whole parts without visualisation. As a possibility, the designer can

separate the fragments via sub-feature into sequence diagrams and add ambiguities,

which describe the optionality in terms of the whole project.

Such an ambiguity is formulated as:

A8 = (bCMSProject+ownedElement, opt, {PSCsendReceiveSequence})

On account of this, the optionality for every other sub-feature of the Other feature

group can be expressed in this way. But even if the optionality can be expressed,

the sequence diagrams must be created as well. Due to this, the Ambiguity Concept

does not save any effort in terms of creating sequence diagrams.

Furthermore, state machine diagrams are created. They describe possible states and

are based on the state machine diagrams created for the reference variant. The

authors of the focused case study modelled the whole state machine diagrams again

and modified affected elements. Modified elements here are transitions (named

with an operation of the component depending on the state machine) between

states and return-values (UML OpaqueBehavoir interface) after a transition was

conducted. While all state machine diagrams can be taken from the models of the

reverence variant, a diagram for the DispatchService must be newly created. This

is due to the fact, that this class does not exist in the reference variant and thus,

there is no state machine diagram yet.

To express the mentioned modifications with the Ambiguity Concept, there is no

need to model the entire diagrams again. Thus, the following examples show how

easily those changes can be expressed with the ambiguity approach. In the case

study there are no real textual descriptions for that part, but they can be derived via

the comparison of diagrams of the reference variant and the created ones. The

chosen state machine describes states for the PSCSystem and there will be two

Case Study

 78

representative examples discussed. The first explains how to express a transition of

a state and the second one a return value.

1. Change the body condition of the state named with S.5.1 from receivePolice-

CarArrivedAtCrisis AND numArrivedPoliceCars++ to policeCarsArrived AND

numArrivedPoliceCars++

The ambiguity can be formulated as:

A9 = (policeCarsArrived AND numArrivedPoliceCars++ + body, xor,

{receivePoliceCarArrivedAtCrisis AND

 numArrivedPoliceCars++,

 policeCarsArrived AND numArrivedPoliceCars++})

This ambiguity says that for the model element policeCarsArrived AND numAr-

rivedPoliceCars++ (an instance of a Class that implements the OpaqueBehavoir

Interface) and its feature body the possibility exists that its describing return-value

might change into a newly created value named with receivePoliceCarArrivedA-

tCrisis AND numArrivedPoliceCars++. The relation kind with value xor results in

the possibility that such a return value can consist of more than one. Thus, both

cannot exist together and the xor value expresses that mutually exclusive relation.

2. Change the transition name of the state named S.5.1 from police-

CarArrivedPSCoordinator to receivePoliceCarArrivedAtCrisis.

The ambiguity can be formulated as:

A10 = (policeCarArrivedPSCoordinator+name, opt,

{receivePoliceCarArrivedAtCrisis})

The ambiguity expresses that there exists a transition named police-

CarArrivedPSCoordinator or receivePoliceCarArrivedAtCrisis. The optional rela-

tion kind can be used, since the feature name has the multiplicity exactly one and

Case Study

 79

thus only one of them can be selected at the same time. There is no need to declare

a mutually exclusive relation kind.

Finally, Figure 30 depicts a screenshot of the case study and defined ambiguities in

the Ambiguitymanager.

Figure 30: Implementation of the case study with the Ambiguitymanager.

5.2.2 Resulting Choices

The resulting choices from all ambiguities are generated as discussed in 3.2.1 Re-

lations between Ambiguities. In this section, the bCMSProject packet and its

ownedElement feature is chosen to demonstrate a choice generation for the case

study.

The following ambiguity expresses the optional DisplayService class as explained

in the previous section:

A1 = bCMSProject+ownedElement à {(opt, {DispatchService})}

Due to the fact that there are a huge number of mandatory model elements in the

bCMSProject ownedElement feature it goes beyond the scope of this thesis to men-

tion all of them in the choices. They combined and called M for mandatory values.

Case Study

 80

This results in two choices: the first enfolds M and the second consists of M and

the DisplayService class.

When implementing the case study there are a huge number of optional elements,

which would result in a lot of more choices than the two mentioned above. Figure

31 shows a screenshot of all generated choices for the bCMSProject and its owned

elements with the Ambiguitymanager.

Figure 31: Case study choice generation.

5.2.3 Comparison of Approaches

The implementation of the focused case study with the Ambiguity Concept illus-

trates its strengths and weaknesses. The following section offers a comparison of

the approach used in the case study and the Ambiguity Concept.

The case study focuses on expressing variability of SPL that can be considered as

the expression of design decisions for all products of a product line. The Ambigui-

ty Concept tries to handle different design decisions as well, even if it is not yet

used for product lines.

The Ambiguity Concept has the advantage that it offers the possibility to define

optional elements instead of re-modelling whole model parts depending on a deci-

sion. The approach of Gomaa [2] (mentioned in 2.4 Related Work) is similar to the

one used in the case study. However, Gomaa also defines optional keywords to tag

Case Study

 81

elements as optional depending on a selected configuration for a product. Istoan et

al. [24] define optional keywords to express variability aspects as well. In the Am-

biguity Concept, optional elements result automatically from ambiguity definitions,

respectively from the choice generation.

On account of this, choices, which are the results of ambiguities and existing val-

ues, can be compared with valid or invalid configurations of a derived SPL prod-

uct. The former must satisfy ambiguity definitions concerning valid combinations

of choicevalues. However, the latter is concerned with the satisfiability of defined

feature models. Thus, a huge difference between the case study approach and the

Ambiguity Concept is, that resulting choices for a location are generated automati-

cally and must not configured by a designer (as they would have to be in a product

configuration process).

Another advantage of the Ambiguity Concept is that one can select particular mod-

el elements of a complex model and add certain ambiguities instead having to re-

model the entire diagrams again. This is the case in 5.2.1.2 Behavioural Changes

and mentioned in state machine diagrams by adding ambiguities for transitions and

return values (body).

A weakness of the Ambiguity Concept is that as of yet no mechanism for elements,

which must be selected together such as those depending on a particular feature,

exists. This issue can be resolved by adding a new relation kind that represents a

kind of mandatory dependency expression.

In terms of completely new defined sequence diagrams for a variation point, as

mentioned in 5.2.1.2 Behavioural Changes, the Ambiguity Concept does not yet

offer any benefit in terms of modelling fewer aspects again. Due to a missing visu-

alisation of created lifelines, calls between them, guard conditions, etc. creating an

overview about a model, respectively a sequence diagram without seeing the com-

ponents and their relations, would be very hard.

In conclusion, the implementation of a larger case study shows aspects of the Am-

biguity Concept, which did not emerge in smaller modelling projects. Some of

them result from the reasoning process or the huge numbers of generated choices

and will be discussed in the next section.

Case Study

 82

5.3 Reasoning

This subchapter deals with the evaluation and Ambiguous Reasoning output, so

called determinations, of the case study. Due to the huge number of model ele-

ments, defined ambiguities, and resulting choices the reasoning process is reduced

to a single consistency rule. Furthermore, the first rule in Table 1 defines that the

name of a message call in a sequence diagram must be an operation in the receiv-

er’s class definition. This rule is used to evaluate the case study. The reasoning

process determines which choicvalues can be selected together and which ones

represent an invalid combination in terms of the consistency rule. That kind of

combination is called determination; it was introduced in 4.2.1.5 Model Analyser

Connection.

5.3.1 Determinations

A determination represents a selection of an ambiguity and one of its choices. The

case study comprises a huge number of message calls in sequence diagrams. Figure

32 shows a screenshot of all resulting determinations of the case study.

Figure 32: Case study determinations.

Case Study

 83

5.3.2 Problems

By implementing the Ambiguity Concept and reasoning over a huge number of

ambiguous and non-ambiguous model elements, some problems occurred in terms

of the performance and scalability.

Reasoning over a huge number of model elements, constraints and choices can lead

to performance problems. This results in a huge number of model elements that

must be encountered during the evaluation. Thus, the evaluation of the case study

with only one rule takes on average 38,000 milliseconds. The choice generation

time separated takes on average 5,100 milliseconds; this can be considered as an

acceptable result, but certainly, depends on the used computer performance.

 84

Problems and Limitations

 85

6 Problems and Limitations

In this chapter, some limitations and problems, which occurred during the imple-

mentation of the case study and the adaption of the Ambiguity Concept with the

Ambiguitymanager will be pointed out. Additionally, some general issues and pos-

sible extensions concerning the Ambiguity Concept will be discussed.

6.1 Storage and Encapsulated Features

In theory it is not difficult to create new elements for an ambiguity and to play

around with them. However, in practice it has been shown that it is difficult to cre-

ate and to store those elements in an appropriate way. In addition, certain features

of UML elements are more complex and structured differently.

6.1.1 Storage of Elements

Concerning the storage of elements as described in 4.2.1.2 Persistence, there are

some restrictions in terms of the creation of UML elements in the RSA. Thus,

some UML elements cannot exist physically in a project without a container, re-

spectively an owner element. Hence, an UML operation cannot be alive in a project

without a component that holds it in its feature ownedOperation. Thus, an owner-

ship relation for an operation and another element must exist. Since this must be

considered for any UML element, there is no generic approach to solve that issue.

Thus, for almost every UML element a certain implementation of its persistence

has to exist. Unfortunately, the type of the owner element cannot be derived auto-

matically from the UML specification. Since the specification declares meta-types

of elements the concrete type is not available.

Concerning the implementation of the case study the following ambiguity shows

the problem in detail:

A7 = (DispatchService+ownedOperation, opt,

{policeCarDispatchOrder(), fireTruckDispatchedOrder()})

Problems and Limitations

 86

The DispatchService has two optional operations (policeCarDispatchOrder(),

fireTruckDispatchedOrder()). To solve this problem, a container must be cre-

ated based on the feature description in the XML file of Code 6 for the feature

ownedOperation of a class since the operations do not exists in the project yet.

6.1.2 Encapsulated Features

On account of this, there are features of the UML feature specification, which are

encapsulated in other features. This results in more effort concerning a specific

implementation of UML features as described in 4.2.1.2 Persistence.

However, in the feature definition this issue can be found in the description of an

UML message and its feature receiveEvent. The receiveEvent is not accessible

directly, but is represented by its feature covered. Accordingly, the element type of

that sub-feature is called MESSAGE_OCCURRENCE_SPECIFICATION.

6.2 Optional Elements

Another interesting aspect surfaces if an ambiguity declares that a choicevalue

must be deleted if a specific choice is selected. Currently, the designer can define

an ambiguity in that the UML element of a choicevalue is treated as optional con-

cerning its parent element (e.g. a package is the parent of a class) and the particular

feature. In the Ambiguitymanager an optional element actually exists in both cases

in the project independent from a selected choice. Thus, the realization of a choice

without that optional element must perform the physically deletion process of it

and cannot be used in other defined ambiguities and their choices. Furthermore, the

choices resulting from other ambiguity must contain nullpointers or a unique refer-

ence element to symbolise a non-existing element. That issue shows that model

elements do have a relationship among one another.

6.3 Implicit and Explicit Dependencies

The Ambiguity Concept and the Ambiguitymanager as well are restricted in terms

of the definitions of dependencies between any kinds of elements. Dependencies

can be implicit or explicit. Explicit dependencies can be detected by a reasoner and

can be based on constraints. However, implicit dependencies can be invalid con-

Problems and Limitations

 87

cerning a specific intention or idea of a designer. Those dependencies cannot be

found via the Ambiguitymanager. Even if this is not possible yet, the connected

reasoner evaluates a model based on defined rules. Thus, rules or constraints de-

scribing non-formal knowledge and restrictions can be defined as well. Due to this,

the reasoner can be used to detect those inconsistencies.

For a better understanding, the following sections provide concrete examples of

such dependencies.

6.3.1 Grouping Mechanism Choicevalues

The Ambiguitymanager reaches its limits if there is need for choicevalues, which

contain a group of elements. The following example illustrates that issue with the

aid of the mp3 player scenario.

There is a need to create an ambiguity for the whole project of the mp3 player

scenario (called here project) and all its containing elements (called here ownedEl-

ement). Thus, the location consists of the element project and its feature

ownedElement. The idea is to express the fact that some groups of elements are

optional and mutually exclusive. Optional elements are the MP3Playlist and the

association (called here connection) to the Mp3Player, because they are only alive

if the first variant is selected. Furthermore, the sequence diagram depicted in Fig-

ure 9 contains two optional elements as well. The former represents the Lifeline

(called here lifeline) of the MP3Playlist, the latter the message call (called here

call) from the MP3Player to the MP3Playlist.

Another optional element can be found in the sequence diagram of the second vari-

ant depicted in Figure 11. Thus, the recursive message call (called here selfcall) of

the MP3Player is only alive if the second variant is selected. On account of this, the

add operation (called here add) located in the MP3Player is only alive, if the se-

cond variant is selected.

However, those requirements can be expressed through the Ambiguity Concept as

follows:

A3 = (project+ownedElement, xor,

{{MP3Playlist, connection, lifeline, call}, {selfcall, add}})

Problems and Limitations

 88

The difference between the ambiguity A3 and A2 or A1 (see further down) is that

the choicevalues are a set of elements instead of a single one. This ambiguity ex-

presses exactly which elements can be selected and are needed at the same time

related to the chosen variant. However, it is possible to express the two variants

with the Ambiguity Concept as it has been shown in chapter 3.2.1 Relations be-

tween Ambiguities. In that approach more than one ambiguity must be defined and

a reasoner is needed to detect valid combinations of ambiguous elements. This is

due to the fact that the choices resulting from the defined ambiguities are com-

bined, leading to an increased number of choices. However, in the list approach

mentioned above, the ambiguity consists of only two choices: the first or the se-

cond list. Thus, the list approach is more generic and efficient due to a more re-

stricted number of choices.

In theory, this issue is solved through the Ambiguity Concept (see A3) due to the

fact that the concept of a choicevalue does not have a specific type. Thus, concern-

ing the case study, a grouping mechanism depending on a variation point can re-

duce the number of choices due to fewer generated combinations of choicevalues.

In practice (respectively concerning the case study) this problem occurred due to a

huge number of optional elements for the whole project. This means that if there

are a lot of optional elements, such as sequence diagrams or classes, those selec-

tions depend on a particular product configuration. Ambiguity A8 (5.2.1.2 Behav-

ioural Changes, p. 76) of the case study describes that problem in a very simplified

manner. In A8 there exists only one choicevalue, respectively one optional se-

quence diagram. Concerning the whole case study project in the RSA there are a

huge number of owned elements and optional elements. Thus, a lot of choices are

generated due to all possible combinations of optional and mandatory elements.

This leads to performance problems as described in 5.3.2 Problems.

Concerning the Ambiguitymanager, choicevalue elements must have a specific

type. The list approach can be realised if the Ambiguitymanager offers the possibil-

ity to add lists of elements ignoring the difference in types. Hence, dealing with

elements without knowing their specific structure can result in a greater effort in

terms of individual implementations. This issue will also be discussed in 6.4 Com-

plex Reverse Ambiguities.

Problems and Limitations

 89

6.3.2 Grouping Mechanism of Choices

Another limitation of the Ambiguitymanager is that as of yet no mechanism for

elements, which must selected together (e.g. in product configuration of a product

line), exists. Such a grouping mechanism for ambiguities, which depend on anoth-

er, has yet to be created. An approach to add dependencies among certain choices

of ambiguities (grouping mechanism of choices) is required.

In the case study, this issue was mentioned in the context of definitions of ambigui-

ties in terms of require statements of features. In the Ambiguitymanager it is im-

possible to add such groups of choices. The output of the reasoning process, how-

ever, provides some indications which ambiguity choices can be selected together

even if their ambiguities are not depending on the same model element and the

same feature (location). In the feature model depicted in Figure 29 of the case

study, one finds the feature Other of the variation point Vehicle management.

However, Other enfolds four sub-features which partially require one another. The

Ambiguitymanager does not offer a functionality to add a dependency between

those features.

The previous subchapter describes a list approach for choicevalues. However, that

section deals with the introduction of a grouping mechanism for choices. That

means that an ambiguity choice can only be considered as a valid choice if it is

selected with another choice of another independent ambiguity. In this case, inde-

pendent means that their ambiguities do not belong to the same location. In Addi-

tion, valid is correct concerning from the perspective of a modelling aspect and not

in terms of an UML rule. The latter can be solved via a connected reasoner. The

following section illustrates this problem with the aid of a concrete example taken

from the mp3 player scenario in 3.1.

The problem presented here is that the MP3Player has an optional association to

the MP3Playlist, since there are two variants (Figure 8 or Figure 10) of the scenar-

io. However, this association is only alive if the designer takes the first variant

depicted in Figure 8. The UML feature for an association of a class is called

ownedAttribute.

Problems and Limitations

 90

That ambiguity can be expressed in the following way:

A1 = (MP3Player+ownedAttribute, optional, {MP3Playlist})

Additionally, there are two choices resulting from that ambiguity. They are illus-

trated in Figure 33.

Figure 33: Choices of the first ambiguity.

In addition, there are two options where to store the add operation. In the first vari-

ant it is located in the MP3Playlist, in the second variant one finds it in the

MP3Player. Thus, the following ambiguity can be derived as follows:

A2 = (add()+class, xor, {MP3Player, MP3Playlist})

Additionally, there are two choices resulting from the second ambiguity. They are

illustrated in Figure 34.

Figure 34: Choices of the second ambiguity.

There are only two valid combinations of choices for the model to express the first

or the second variant of the scenario.

The selection of Choice 1 of the first ambiguity and the Choice 1 of the second can

be considered as valid. This combination expresses that there is only one associa-

Problems and Limitations

 91

tion from the MP3Player to the MP3Display and the add operation is located in the

MP3Player. This realises the second variant of the mp3 player scenario (with only

two components) exactly.

The selection of Choice 2 of the first ambiguity and the Choice 2 of the second can

be considered valid as well. This combination expresses that there is an association

from the MP3Player to the MP3Playlist and the add operation is located in the

MP3Playlist. This realises the first variant of the mp3 player scenario (with three

components) exactly.

However, due to the choice generation introduced in 3.2.1 Relations between Am-

biguities, all combinations are valid, since the association and the location of the

add operation do not affect one another. In the RSA the MP3Playlist is always

alive, so selecting that class as the owner for the add operation remains a valid

UML rule to select. If this was not the case, the reasoner would detect the invalid

choice for the ownership because of the missing choicevalue MP3Playlist.

6.3.3 Choice in Multiple Ambiguities

A UML element can be referenced by different choicevalues of ambiguities. There

are situations in which those ambiguities are independent from one another con-

cerning any relations in a model. There are no implicit dependencies between

them. In addition, they do not have any points of contract in the reasoning process.

The output of a reasoning process gives information about invalid combinations of

choices if they are related to one another depending on UML constraints (rule).

However, the output does not detect invalid combinations of choices if their de-

pending ambiguities have no explicit or implicit dependencies. In the Ambigui-

tymanager choicevalues are unique elements for a location. Thus, there can be n

choicevalues for different locations, which reference to the same element (implicit

dependency). Nevertheless, if choices contain same elements in that way, they

actually depend on one another. This is due to the fact, that choices for a location

can affect other locations with the same referenced UML element. That dependen-

cy is ignored during the definition of ambiguities and in any conducted reasoning

process.

However, the reasoning process can be improved to find such dependencies. Addi-

tionally, the architecture of the Ambiguitymanager, respectively the model pack-

Problems and Limitations

 92

age, can be modified to treat that choicevalues as unique elements in the whole

program.

6.3.4 Solution with Constraints

In the Ambiguity Concept ambiguities are considered as independent elements.

They do not have any relations to one another. A reasoner checks the consistency

of combinations, respectively of their choices. However, the output of the reason-

ing process is a collection of valid and invalid combinations of all ambiguity

choices. If choices of different ambiguities are related to each other, their

choicevalues, respectively the ambiguous model elements in the depending model-

ling project, are related as well. An example for such a relation is provided through

a condition/constraint in Table 1 and is described in 2.2.1 Consistency Rules.

Those rules describe dependencies of UML elements to prove a model as valid.

However, concerning the case study and the product line approach a decision for a

feature is made due to a requirement in a product configuration. To deem a model

as valid concerning a requirement, it can also be solved through conditions for

ambiguities. Those conditions can be defined as constraints for ambiguity choices.

This means one has to decide, which ambiguity choices can be selected together to

fulfil a product line feature. Hence, the dependency between ambiguities can be

expressed through those constraints.

6.4 Complex Reverse Ambiguities

This section is concerned with complex reverse ambiguities. A reverse ambiguity

is generated by a definition of an ambiguity.

The Ambiguitymanager und the initial Ambiguity Concept can only handle single

choicevalues. As described in the previous sections, the Ambiguity Concept can be

extended to offer such a grouping functionality.

However, the Ambiguitymanager is restricted, since choicevalue elements must

have a specific type. The data structure of the Ambiguitymanager can be modified

to allow lists of choicevalues. Hence, a specific type or even a meta-type can be

advantageous. Since such a group of choicevalue elements can be defined, a re-

verse ambiguity for each element must be generated.

Problems and Limitations

 93

A reverse ambiguity’s location consists of the choicevalue and the opposite feature

of the original feature. Without any type restrictions, it may be the case that no

opposite feature for one of the choicevalues exists, due to the fact, that there is e.g.

no definition in the UML specification. Hence, dealing with elements without

knowing their specific structure or type may result in additional effort in terms of

individual implementations or even uncontrollable side effects.

 94

Summary and Conclusion

 95

7 Summary and Conclusion

A software designer has the ability to define a system using the UML. However, a

concept to document design decisions along the modelling process or to try differ-

ent decisions is yet to be developed. Furthermore, such a concept could be used to

check the consistency of unsolved decisions and to detect valid or invalid combina-

tions.

This thesis introduced the Ambiguity Concept. This concept can be used to add

different design decision, so called ambiguities, to design models. A consistency

checker (reasoner) is used to detect inconsistencies in a model with ambiguities.

The Unified Modeling Language (UML) is the de facto standard modelling lan-

guage to design a system in terms of its behavioural and structural aspects. Due to

this, the Ambiguity Concept is discussed in terms of the UML.

In addition, the implementation of the Ambiguitymanager, a plugin for the IBM

Rational Software Architect, was rpresented. The Ambiguitymanager can be used

to add ambiguities to UML models and to conduct reasoning steps.

Additionally, a huge case study employing the Ambiguitymanager was implement-

ed. This way, strengths and weaknesses of the Ambiguity Concept and the Ambigu-

itymanager were discussed.

7.1 Conclusion

The Ambiguity Concept introduced in this thesis offers strengths and weaknesses

concerning expressions of unsolved decisions to design models. It has the ad-

vantage that it offers the possibility to define optional elements instead of re-

modelling whole entire parts depending on a decision. With the Ambiguitymanager

one can select particular model elements of a complex model and add certain am-

biguities instead of re-modelling the entire diagram.

Another advantage concerning software product line approaches, is that resulting

choices for a location are generated automatically and do not have to be configured

by a designer as it would be the case in a product configuration process.

Although all examples are realised with the UML, the Ambiguity Concept is appli-

cable for any kind of modelling language as long as the language is based on a well

defined meta-model.

Summary and Conclusion

 96

However, the Ambiguity Concept is even capable of dealing with grouped ele-

ments as was proven in 6.3.1 Grouping Mechanism Choicevalues. Concerning the

case study, a weakness of the Ambiguitymanager is that it does not offer a mecha-

nism as it is required in depending features in a variation point. A grouping mecha-

nism for ambiguities or model elements, which require one another, is missing.

Additionally, it is required to add any kind of dependencies to ambiguities, choices,

and choicevalues to grant a designer additional flexibility.

The Ambiguitymanager does not offer any visualisation in the graphical editor of

defined ambiguities and their possible effect on the whole model. This problem

was encountered during the implementation of the case study when huge sequence

diagrams were modelled. There is a large number of newly created lifelines, calls

between them, guard conditions, etc. and thus, it would be very hard to gain an

overview about a model, respectively a sequence diagram, without seeing defined

components and their relations. Due to this, the Ambiguitymanager does not yet

offer any benefit in terms of re-modelling lesser aspects in terms of completely

new defined complex sequence diagrams.

In conclusion, the implementation of a larger case study shows aspects of the Am-

biguity Concept, which did not emerge in smaller modelling projects. Some of

them are results of the reasoning process and the huge number of generated choic-

es. There exists a scalability problem, as mentioned in 5.3.2 Problems, as a result

of the huge number of generated choices and its visualisation via the RSA.

The implementation of the case study proved that the Ambiguity Concept enables

users to express complex aspects of variability in design models and to handle a

wide range of design decisions. In addition, the Ambiguitymanager can be extend-

ed in terms of new definitions of model elements and their features. Unfortunately,

the UML specification is very complex. There is a huge number of definitions, so

implementing all certain cases for any UML would take much effort and a tremen-

dous amount of knowledge. Due to this, a generic approach in terms of the extrac-

tion of feature definitions is not realizable in a simple way.

Although the Ambiguitymanager has its weaknesses, they can be solved by a func-

tionality to add more dependencies to ambiguities, choices, and choicevalues. Ad-

ditionally, the usability of the Ambiguitymanager can be improved by a grouping

mechanisms and extended graphical visualisation.

Summary and Conclusion

 97

7.2 Future Work

The implementation of the case study clarifies strengths but also weaknesses of the

Ambiguity Concept. As shown in the previous section, the Ambiguity Concept can

handle choicevalues, which contain a group of elements. Further work is required

in order to extend the Ambiguitymanager by introducing a grouping mechanism of

depended ambiguities and model elements. Additionally, it is essential to add more

dependencies to ambiguities, choices, and choicevalues.

Furthermore, a graphical visualisation of effects on the whole model for the RSA is

inevitable. By doing this, the designer can gain an overview about his ambiguities

and design decisions immediately.

The determinations resulting from a reasoning process can encapsulate additional

knowledge which can be derived. This means concretely, that if there is no valid

determination for a given constraint (meaning there is no choice left that fulfils

defined requirements) there must be a general design fault in the model. Hence, the

model can be considered as invalid by its definition.

Additionally, it can be helpful to provide indications of values or elements, which

are defined initially as optional, but become mandatory by occurring in any valid

choice. However, if a value or element never occurs in a valid choice, it can be an

indication of an invalid value, thus, a modelling fault.

Determinations can be used to identify values or elements, which are defined as

mandatory or required, but exclude other required values, resulting in a lack of

choice comprising all required ones.

The determinations offer some additional important and useful knowledge that

should be made available to a designer.

 98

Figures

 99

Figures

Figure 1:_ Hierarchy and structure of UML diagrams [1]. 6	

Figure 2: UML class diagram of a fictive mp3 player scenario. 7	

Figure 3: UML sequence diagram of a fictive mp3 player scenario. 8	

Figure 4: UML state machine diagram for the MP3Player. 9	

Figure 5: MP3Playlist with a new set operation. ... 16	

Figure 6: Inconsistency in the defined sequence diagram. 17	

Figure 7: Feature diagram for the mobile phone SPL ... 21	

Figure 8: Variant 1: UML class diagram with three components. 26	

Figure 9: Variant 1:UML sequence diagram with three components. 26	

Figure 10: Variant 2: UML class diagram with two components. 27	

Figure 11: Variant 2: UML sequence diagram with two components. 27	

Figure 12: The Ambiguity Concept expressed in UML notation. 28	

Figure 13: Derivation of an ambiguity .. 34	

Figure 14: Derivation of a reverse ambiguity .. 35	

Figure 15: Choices for a single ambiguity. .. 42	

Figure 16: Choices for two combined ambiguities. ... 43	

Figure 17: Example of invalid choices for two combined ambiguities. 44	

Figure 18: Reasoning process of the first consistency rule. 50	

Figure 19: The Java perspective of the RSA. .. 52	

Figure 20: The Modelling perspective of the RSA. ... 53	

Figure 21: The AddView to add ambiguities to UML model elements. 55	

Figure 22: The AmbiguityView to manage defined ambiguities. 58	

Figure 23: The DeterminationView to generate the choices and to validate. 59	

Figure 24: The ReasoningView to see all validation steps. 59	

Figure 25: The persistence of ambiguities in the RSA project explorer. 63	

Figure 26: Visualisation of ambiguities. .. 65	

 100

Figure 27: Visualisation of choices and determinations. ... 65	

Figure 28: Domain model of the bCMS-SPL. .. 70	

Figure 29: Feature model of the bCMS-SPL. .. 72	

Figure 30: Implementation of the case study with the Ambiguitymanager. 79	

Figure 31: Case study choice generation. .. 80	

Figure 32: Case study determinations. .. 82	

Figure 33: Choices of the first ambiguity. ... 90	

Figure 34: Choices of the second ambiguity. .. 90	

Code Examples

 101

Code Examples

Code 1: Creation of an ambiguity in pseudocode. ... 30	

Code 2: Creation of a reverse ambiguity in pseudocode. .. 32	

Code 3: Generation of ambiguity choices in pseudocode. 37	

Code 4 The choice generation in pseudocode. .. 40	

Code 5: Ambiguous Reasoning in pseudocode. .. 48	

Code 6: XML feature definition. ... 56	

Code 7: XML persistence definition. .. 61

 102

Tables

 103

Tables

Table 1: Consistency rules for UML models. .. 11	

Table 2: Decision model for the mobile phone SPL. .. 22	

Table 3: Determination of choices. .. 66

 104

References

 105

References

[1] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User

Guide, Addison-Wesley, Inc. 2005.

[2] H. Gomaa, Designing Software Product Lines with UML., Software Engineer-

ing Workshop – Tutorial Notes, 29th Annual IEEE/NASA

pp. 160-216, 2005.

[3] A. Egyed, D. S. While, Support for Managing Design-time Decisions, IEEE

Transactions on Software Engineering, vol. 32, no. 5, pp. 299-314, May 2006.

[4] G. Booch, J. Rumbaugh, I. Jacobson, Das UML Benutzerhandbuch, Addison-

Wesley Verlag, 2006.

[5] A. Egyed, Instant Consistency Checking for the UML, Proceedings 28th Inter-

national Conference on Software Engineering (ICSE), May 2005.

[6] A. Egyed, N. Medvidovic, Consistent Architectural Refinement and Evolution

using the Unified Modeling Language, Proceedings of the first Workshop on De-

scribing Software Architecture with UML, co-located with ICSE 2001, pp. 83-87,

Toronto, Canada, May 2001.

[7] A. Egyed, Scalable Consistency Checking between Diagrams - The ViewIn-

tegra Approach, Proceedings of the 16th IEEE International Conference on Auto-

mated Software Engineering (ASE), pp. 387-390, San Diego, USA, September

2001.

[8] A. Egyed, Taming Ambiguity to Overcome the Model Consistency Barrier,

European Conference on Software Engineering and Foundations of Software Engi-

neering (ESEC/FSE), Vienna, Austria, September 2001.

[9] A. Egyed, UML/Analyzer: A Tool for the Instant Consistency Checking of UML

Models, Proceedings 29th International Conference on Software Engineering

(ICSE), May 2007.

[10] D. Benavides, S. Segura, A. Ruiz Cortés, Automated analysis of feature mod-

els 20 years later: A literature review, Inf. Syst. vol. 35, no. 6, pp. 615-636, 2010.

[11] D. Le Berre, SAT4J solver, http://www.sat4j.org, accessed July 2012.

[12] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1995.

References

 106

[13] R. Barták, Constraint Programming: In Pursuit of the Holy Grail,

Proceedings of the Week of Doctoral Students (WDS'99), Part IV (Invited Lec-

ture), pp. 555-564, Prague, June 1999.

[14] P. Henteryck, Strategic Directions in Constraint Programming,

ACM Computing Surveys, vol. 28, no. 4, 1996.

[15] S. Easterbrook, M. Chechik, A Framework for Multi-Valued Reasoning over

Inconsistent Viewpoints, Proceedings 23rd International Conference on Software

Engineering, pp. 411-420, May 2001.

[16] IBM, Rational Software Architect,

http://www.ibm.com/developerworks/rational/products/rsa/2012, accessed July

2012.

[17] IBM, Rational Software, http://www-01.ibm.com/software/de/rational/, ac-

cessed July 2012.

[18] The Eclipse Foundation, Eclipse Modeling Framework Project,

http://www.eclipse.org/modeling/emf/2012, accessed July 2012.

[19] The Eclipse Foundation, Eclipse Modeling Project,

http://www.eclipse.org/modeling/2012, accessed July 2012.

[20] T. Ziadi, J. - M. Jezequel, Software product line engineering with the uml:

Deriving products., Software Product Lines, 2006, pp. 557–588.

[21] L. M. Northrop, Sei’s software product line tenets., IEEE Software vol. 19, no.

4, 2002, pp. 32–40.

[22] P. Clements, L. M. Northrop, Software Product Lines: Practices and Patterns,

The SEI Series in Software Engineering, Addison-Wesley, Boston, 2002.

[23] J. Bosch, Design and use of software architectures: adopting and evolving a

product-line approach., ACM Press/Addison-Wesley Publishing Co., New York,

NY, USA, 2000.

[24] A. Capozucca, B. H. C. Cheng, N. Guelfi, P. Istoan, OO-SPL modelling on the

focused case study, September 2011.

[25] K. Pohl, G. Böckle, F. Van Der Linden, Software Product Line Engineering:

Foundations, Principles, and Techniques, Springer-Verlag Berlin Heidelberg,

Germany, 2005.

References

 107

[26] Software product line conference – hall of fame. http://splc.net/fame.html,

accessed July 2012.

[27] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wąsowski, Cool

Features and Tough Decisions: A Comparison of Variability Modeling Approach-

es, Proceedings 6th International Workshop on Variability Modelling of Software-

Intensive Systems, Leipzig, Germany, 2012, pp. 173-182.

[28] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-oriented domain

analysis (FODA) feasibility study., Technical report, CMU/SEI-90TR-21, 1990.

[29] Software Productivity Consortium Services Corporation, Technical Report

SPC-92019-CMC. Reuse-Driven Software Processes Guidebook, Version

02.00.03, 1993.

[30] M. Svahnberg, J. Bosch, Issues Concerning Variability in Software Product

Lines, Proceedings of the Third International Workshop on Software Architectures

for Product Families, pp. 50-60, 2000.

[31] C. Krueger, The BigLever Software Gears Unified Software Product Line

Engineering Framework., Proceedings of the International Software Product Line

Conference (SPLC), pp. 353–353, 2008.

[32] D. Beuche, H. Papajewski, W. Schröder-Preikschat, Variability Management

with Feature Models., Science of Computer Programming (SCP), vol. 53, no. 3,

pp. 333–352, 2004.

[33] S. Apel, C. Kästner, An Overview of Feature-Oriented Software Develop-

ment., Journal of Object Technology vol. 8, no. 5, pp. 49-84, 2009.

[34] IBM, "Eclipse Project", http://www.eclipse.org/org/, 2001.

[35] The Eclipse Foundation, Eclipse Platform Release 3.7

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2F

reference%2Fapi%2Forg%2Feclipse%2Fui%2Fpart%2FViewPart.html, accessed

July 2012.

[36] org.eclipse.uml2.uml.UMLPackage.Literals

http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.uml2.doc%2Freferen

ces%2Fjavadoc%2Forg%2Feclipse%2Fuml2%2Fuml%2FUMLPackage.Literals.ht

ml, accessed July 2012.

References

 108

[37] A. Capozucca, B. H. C. Cheng, N. Guelfi, P. Istoan, G. Mussbacher, Require-

ments definition document of focused case study, June 2011.

http://cserg0.site.uottawa.ca/cma2011/CaseStudy.pdf accessed July 2012.

 109

Curriculum Vitae

Name: Franziska Oellerer

Academic degree: Bachelor of Science (BSc.)

Date of birth: 1985/10/13

Place of birth: Hanover, Germany

Place of residence: Viktoriastr. 5A, 30451 Hanover, Germany

Email address: info@franzolina.de

Languages German (native language), English (flu-

ent), French (conversational), Swedish

(basic knowledge)

Professional Experience

 January 2006–Present

 VIVA Models, Berlin:

 Mannequin

May 2008–January 2010

University of Hildesheim, Software Sys-

tems Engineering: Student assistant

 October 2006–October 2010

 Online journal langeleine media:

 Uncomplimentary Freelancer

 August 2009–October 2009

 itemis AG Lünen: Internship

 110

 July 2009

 iProCon GmbH/University of Hildesheim:

 Docent for Java (Freelancer)

 September 2007–October 2007

 Countryhotel Reguengo Portugal:

 Temporary Employment

 April 2005–July 2005

 Stadtkindverlag stadtkind Magazine:

 Internship

 December 2004–April 2005

 Ralf Mohr Photographie: Personal assis-

tant for photography and graphic design

Education and Training

 September 2010–Present

Johannes Kepler University of Linz: Stu-

dent in Computer Science/Software Engi-

neering, Master of Science/Diplom Inge-

nieurin

October 2007–August 2010

University of Hildesheim: Student in In-

formation Management/Information

Technology, Bachelor of Science

 111

 Winter Term 2006, VHS Hannover,

 Course: Science of Journalism 1

 Summer Term 2004, VHS Hannover,

 Course: Image-Editing with Photoshop

 112

	

 113

Sworn Declaration

I hereby declare under oath that the submitted Master’s thesis has been written

solely by me without any third-party assistance, information other than provided

sources or aids have not been used and those used have been fully documented.

Sources for literal, paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted

text document.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche

kenntlich gemacht habe.

Die vorliegende Diplomarbeit ist mit dem elektronisch übermittelten Textdoku-

ment identisch.

Linz, January 17th, 2013

Franziska Öllerer B. Sc.

	DECKBLATTFINAL
	Diplomarbeit_Final_OhneDeckblatt

